Suppr超能文献

Argonautes、miRISC 和 RNA 结合蛋白之间相互作用在神经元和神经胶质细胞中局部翻译调控中的作用。

A Proposed Role for Interactions between Argonautes, miRISC, and RNA Binding Proteins in the Regulation of Local Translation in Neurons and Glia.

机构信息

Department of Genetics.

Department of Psychiatry.

出版信息

J Neurosci. 2022 Apr 20;42(16):3291-3301. doi: 10.1523/JNEUROSCI.2391-21.2022.

Abstract

The first evidence of local translation in the CNS appeared nearly 40 years ago, when electron microscopic studies showed polyribosomes localized to the base of dendritic spines. Since then, local translation has been established as an important regulatory mechanism for gene expression in polarized or functionally compartmentalized cells. While much attention has been placed on characterizing the local transcriptome and regulatory "grammar" directing mRNA localization in neurons and glia, less is understood about how these cells subsequently de-repress mRNA translation in their peripheral processes to produce a rapid translational response to stimuli. MicroRNA-mediated translation regulation offers a possible solution to this question. Not only do miRNAs provide the specificity needed for targeted gene regulation, but association and dynamic interactions between Argonaute (AGO) with sequence-specific RNA-binding proteins may provide a molecular switch to allow for de-repression of target mRNAs. Here, we review the expression and activity of different AGO proteins in miRNA-induced silencing complexes in neurons and glia and discuss known pathways of miRNA-mediated regulation, including activity-dependent pre-miRNA maturation in dendrites. We further detail work on AGO and RNA-binding protein interactions that allow for the reversal of miRNA-mediated translational silencing, and we propose a model for how intercellular communication may play a role in the regulation of local translation.

摘要

CNS 中局部翻译的第一个证据出现在近 40 年前,当时电子显微镜研究表明多核糖体定位于树突棘的基部。从那时起,局部翻译已被确立为极化或功能分隔细胞中基因表达的重要调节机制。虽然人们已经关注了描述神经元和神经胶质细胞中局部转录组和调节“语法”指导 mRNA 定位的特征,但对于这些细胞如何随后解除其外周突中 mRNA 翻译的抑制以产生对刺激的快速翻译反应,人们的了解较少。miRNA 介导的翻译调控为这个问题提供了一个可能的解决方案。miRNAs 不仅提供了靶向基因调控所需的特异性,而且 Argonaute (AGO) 与序列特异性 RNA 结合蛋白之间的关联和动态相互作用可能提供了一个分子开关,允许靶 mRNA 的去抑制。在这里,我们回顾了不同 AGO 蛋白在神经元和神经胶质细胞中 miRNA 诱导的沉默复合物中的表达和活性,并讨论了已知的 miRNA 介导的调节途径,包括树突中依赖于活性的前体 miRNA 成熟。我们进一步详细介绍了允许 miRNA 介导的翻译沉默逆转的 AGO 和 RNA 结合蛋白相互作用的工作,并提出了一个关于细胞间通讯如何在局部翻译调节中发挥作用的模型。

相似文献

2
SmD1 Modulates the miRNA Pathway Independently of Its Pre-mRNA Splicing Function.
PLoS Genet. 2015 Aug 26;11(8):e1005475. doi: 10.1371/journal.pgen.1005475. eCollection 2015 Aug.
3
Role of GW182 protein in the cell.
Int J Biochem Cell Biol. 2018 Aug;101:29-38. doi: 10.1016/j.biocel.2018.05.009. Epub 2018 May 20.
4
Regulation and different functions of the animal microRNA-induced silencing complex.
Wiley Interdiscip Rev RNA. 2022 Jul;13(4):e1701. doi: 10.1002/wrna.1701. Epub 2021 Nov 1.
5
HRPK-1, a conserved KH-domain protein, modulates microRNA activity during Caenorhabditis elegans development.
PLoS Genet. 2019 Oct 4;15(10):e1008067. doi: 10.1371/journal.pgen.1008067. eCollection 2019 Oct.
6
Phase Transitions in the Assembly and Function of Human miRISC.
Cell. 2018 May 3;173(4):946-957.e16. doi: 10.1016/j.cell.2018.02.051. Epub 2018 Mar 22.
8
NMDAR-dependent Argonaute 2 phosphorylation regulates miRNA activity and dendritic spine plasticity.
EMBO J. 2018 Jun 1;37(11). doi: 10.15252/embj.201797943. Epub 2018 Apr 30.
9
microRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein.
EMBO Rep. 2013 Jan;14(1):80-6. doi: 10.1038/embor.2012.192. Epub 2012 Nov 27.
10
Somatic and Germline MicroRNAs Form Distinct Silencing Complexes to Regulate Their Target mRNAs Differently.
Dev Cell. 2018 Oct 22;47(2):239-247.e4. doi: 10.1016/j.devcel.2018.08.022. Epub 2018 Sep 20.

引用本文的文献

4
Age-Dependent Regulation of Dendritic Spine Density and Protein Expression in Mir324 KO Mice.
J Mol Neurosci. 2023 Oct;73(9-10):818-830. doi: 10.1007/s12031-023-02157-4. Epub 2023 Sep 29.
5
Age-dependent regulation of dendritic spine density and protein expression in Mir324 KO mice.
Res Sq. 2023 Aug 7:rs.3.rs-3221779. doi: 10.21203/rs.3.rs-3221779/v1.
6
RNA regulation in brain function and disease 2022 (NeuroRNA): A conference report.
Front Mol Neurosci. 2023 Mar 13;16:1133209. doi: 10.3389/fnmol.2023.1133209. eCollection 2023.

本文引用的文献

1
The regulatory impact of RNA-binding proteins on microRNA targeting.
Nat Commun. 2021 Aug 20;12(1):5057. doi: 10.1038/s41467-021-25078-5.
2
Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery.
Science. 2021 Aug 20;373(6557):882-889. doi: 10.1126/science.abg6155.
4
Extracellular vesicles and intercellular communication in the central nervous system.
FEBS Lett. 2021 May;595(10):1391-1410. doi: 10.1002/1873-3468.14074. Epub 2021 Apr 3.
5
The Coding and Small Non-coding Hippocampal Synaptic RNAome.
Mol Neurobiol. 2021 Jun;58(6):2940-2953. doi: 10.1007/s12035-021-02296-y. Epub 2021 Feb 10.
6
Germline AGO2 mutations impair RNA interference and human neurological development.
Nat Commun. 2020 Nov 16;11(1):5797. doi: 10.1038/s41467-020-19572-5.
7
Local Translation in Perisynaptic Astrocytic Processes Is Specific and Changes after Fear Conditioning.
Cell Rep. 2020 Aug 25;32(8):108076. doi: 10.1016/j.celrep.2020.108076.
9
The Role of Dynamic miRISC During Neuronal Development.
Front Mol Biosci. 2020 Jan 31;7:8. doi: 10.3389/fmolb.2020.00008. eCollection 2020.
10
Argonaute Proteins: From Structure to Function in Development and Pathological Cell Fate Determination.
Front Cell Dev Biol. 2020 Jan 22;7:360. doi: 10.3389/fcell.2019.00360. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验