Suppr超能文献

浅层面部判断的深度模型。

Deep models of superficial face judgments.

作者信息

Peterson Joshua C, Uddenberg Stefan, Griffiths Thomas L, Todorov Alexander, Suchow Jordan W

机构信息

Department of Computer Science, Princeton University, Princeton, NJ 08540.

Booth School of Business, University of Chicago, Chicago, IL 60637.

出版信息

Proc Natl Acad Sci U S A. 2022 Apr 26;119(17):e2115228119. doi: 10.1073/pnas.2115228119. Epub 2022 Apr 21.

Abstract

The diversity of human faces and the contexts in which they appear gives rise to an expansive stimulus space over which people infer psychological traits (e.g., trustworthiness or alertness) and other attributes (e.g., age or adiposity). Machine learning methods, in particular deep neural networks, provide expressive feature representations of face stimuli, but the correspondence between these representations and various human attribute inferences is difficult to determine because the former are high-dimensional vectors produced via black-box optimization algorithms. Here we combine deep generative image models with over 1 million judgments to model inferences of more than 30 attributes over a comprehensive latent face space. The predictive accuracy of our model approaches human interrater reliability, which simulations suggest would not have been possible with fewer faces, fewer judgments, or lower-dimensional feature representations. Our model can be used to predict and manipulate inferences with respect to arbitrary face photographs or to generate synthetic photorealistic face stimuli that evoke impressions tuned along the modeled attributes.

摘要

人类面孔的多样性以及它们出现的情境,产生了一个广阔的刺激空间,人们据此推断心理特征(如可信度或警觉性)和其他属性(如年龄或肥胖程度)。机器学习方法,特别是深度神经网络,提供了面部刺激的富有表现力的特征表示,但由于前者是通过黑箱优化算法产生的高维向量,所以很难确定这些表示与各种人类属性推断之间的对应关系。在这里,我们将深度生成图像模型与超过100万次判断相结合,以对一个全面的潜在面部空间中的30多种属性推断进行建模。我们模型的预测准确性接近人类评分者之间的可靠性,模拟结果表明,使用更少的面孔、更少的判断或更低维的特征表示是不可能达到这种准确性的。我们的模型可用于预测和操纵关于任意面部照片的推断,或生成逼真的合成面部刺激,以唤起沿着建模属性调整的印象。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ff0/9169911/c11590c4aa7f/pnas.2115228119fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验