Suppr超能文献

静止期癌细胞通过形成免疫抑制微环境来抵抗 T 细胞攻击。

Quiescent cancer cells resist T cell attack by forming an immunosuppressive niche.

机构信息

Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.

Center for Cancer Research at Mass General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.

出版信息

Cell. 2022 May 12;185(10):1694-1708.e19. doi: 10.1016/j.cell.2022.03.033. Epub 2022 Apr 20.

Abstract

Immunotherapy is a promising treatment for triple-negative breast cancer (TNBC), but patients relapse, highlighting the need to understand the mechanisms of resistance. We discovered that in primary breast cancer, tumor cells that resist T cell attack are quiescent. Quiescent cancer cells (QCCs) form clusters with reduced immune infiltration. They also display superior tumorigenic capacity and higher expression of chemotherapy resistance and stemness genes. We adapted single-cell RNA-sequencing with precise spatial resolution to profile infiltrating cells inside and outside the QCC niche. This transcriptomic analysis revealed hypoxia-induced programs and identified more exhausted T cells, tumor-protective fibroblasts, and dysfunctional dendritic cells inside clusters of QCCs. This uncovered differential phenotypes in infiltrating cells based on their intra-tumor location. Thus, QCCs constitute immunotherapy-resistant reservoirs by orchestrating a local hypoxic immune-suppressive milieu that blocks T cell function. Eliminating QCCs holds the promise to counteract immunotherapy resistance and prevent disease recurrence in TNBC.

摘要

免疫疗法是三阴性乳腺癌(TNBC)的一种有前途的治疗方法,但患者会复发,这凸显了需要了解耐药机制的重要性。我们发现,在原发性乳腺癌中,抵抗 T 细胞攻击的肿瘤细胞处于静止状态。静止期癌细胞(QCCs)与免疫浸润减少的细胞形成簇。它们还表现出更高的致瘤能力和更高的化疗耐药性和干性基因表达。我们采用单细胞 RNA 测序技术,结合精确的空间分辨率,对 QCC 生态位内外浸润细胞进行了分析。这项转录组分析揭示了缺氧诱导的程序,并在 QCC 簇内发现了更多耗竭的 T 细胞、肿瘤保护性成纤维细胞和功能失调的树突状细胞。这揭示了基于肿瘤内位置的浸润细胞的不同表型。因此,QCC 通过协调局部缺氧免疫抑制环境来构成免疫治疗耐药性的储库,从而阻断 T 细胞功能。消除 QCC 有望抵抗免疫治疗耐药性并预防 TNBC 疾病复发。

相似文献

1
Quiescent cancer cells resist T cell attack by forming an immunosuppressive niche.
Cell. 2022 May 12;185(10):1694-1708.e19. doi: 10.1016/j.cell.2022.03.033. Epub 2022 Apr 20.
2
Mechanisms of HIF1A-mediated immune evasion in gastric cancer and the impact on therapy resistance.
Cell Biol Toxicol. 2024 Oct 10;40(1):87. doi: 10.1007/s10565-024-09917-x.
3
AKT1 quiescent cancer cells persist after neoadjuvant chemotherapy in triple negative breast cancer.
Breast Cancer Res. 2017 Aug 1;19(1):88. doi: 10.1186/s13058-017-0877-7.
5
Regulatory T cells are associated with the tumor immune microenvironment and immunotherapy response in triple-negative breast cancer.
Front Immunol. 2023 Sep 12;14:1263537. doi: 10.3389/fimmu.2023.1263537. eCollection 2023.
6
Single-cell atlas reveals a distinct immune profile fostered by T cell-B cell crosstalk in triple negative breast cancer.
Cancer Commun (Lond). 2023 Jun;43(6):661-684. doi: 10.1002/cac2.12429. Epub 2023 May 9.
7
Quiescent Cancer Cells-A Potential Therapeutic Target to Overcome Tumor Resistance and Relapse.
Int J Mol Sci. 2023 Feb 13;24(4):3762. doi: 10.3390/ijms24043762.
9
Finding your niche: immune evasion in quiescent tumor reservoirs.
Trends Immunol. 2022 Jul;43(7):500-502. doi: 10.1016/j.it.2022.05.003. Epub 2022 Jun 5.
10
Nanocarrier-mediated immunogenic chemotherapy for triple negative breast cancer.
J Control Release. 2020 Jul 10;323:431-441. doi: 10.1016/j.jconrel.2020.04.040. Epub 2020 Apr 30.

引用本文的文献

1
Decoding the adaptive survival mechanisms of breast cancer dormancy.
Oncogene. 2025 Aug 27. doi: 10.1038/s41388-025-03529-3.
3
Tumor Niche Influences the Activity and Delivery of Anticancer Drugs: Pharmacology Meets Chemistry.
Pharmaceuticals (Basel). 2025 Jul 17;18(7):1047. doi: 10.3390/ph18071047.
4
Bridging the Gap in Breast Cancer Dormancy: Models, Mechanisms, and Translational Challenges.
Pharmaceuticals (Basel). 2025 Jun 26;18(7):961. doi: 10.3390/ph18070961.
5
Targeted degradation of sICOSL reverses cytotoxic T cells dysfunction.
Exp Hematol Oncol. 2025 Jul 24;14(1):100. doi: 10.1186/s40164-025-00692-x.
7
Strong Immune Privileges of MSC and Other Nes-GFP Progenitors in Bone Marrow of Transgenic Mice.
Immune Netw. 2025 Apr 22;25(3):e20. doi: 10.4110/in.2025.25.e20. eCollection 2025 Jun.
8
Co-delivery paclitaxel and IR783 as nanoparticles for potentiated chemo-photothermal-immunotherapy of triple-negative breast cancer.
Mater Today Bio. 2025 Jun 16;33:101993. doi: 10.1016/j.mtbio.2025.101993. eCollection 2025 Aug.
9
Tumor metabolome remolded by low dose mitochondrial uncoupler elicites robust CD8 T cell response.
Cell Death Discov. 2025 Jul 1;11(1):291. doi: 10.1038/s41420-025-02584-9.

本文引用的文献

1
clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.
Innovation (Camb). 2021 Jul 1;2(3):100141. doi: 10.1016/j.xinn.2021.100141. eCollection 2021 Aug 28.
2
Best practices and tools for reporting reproducible fluorescence microscopy methods.
Nat Methods. 2021 Dec;18(12):1463-1476. doi: 10.1038/s41592-021-01156-w. Epub 2021 Jun 7.
3
Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy.
Nature. 2021 Jun;594(7864):566-571. doi: 10.1038/s41586-021-03614-z. Epub 2021 Jun 2.
4
Integrated analysis of multimodal single-cell data.
Cell. 2021 Jun 24;184(13):3573-3587.e29. doi: 10.1016/j.cell.2021.04.048. Epub 2021 May 31.
5
Nerve growth factor receptor increases the tumor growth and metastatic potential of triple-negative breast cancer cells.
Oncogene. 2021 Mar;40(12):2165-2181. doi: 10.1038/s41388-021-01691-y. Epub 2021 Feb 24.
8
A conserved dendritic-cell regulatory program limits antitumour immunity.
Nature. 2020 Apr;580(7802):257-262. doi: 10.1038/s41586-020-2134-y. Epub 2020 Mar 25.
10
UVB-Induced Tumor Heterogeneity Diminishes Immune Response in Melanoma.
Cell. 2019 Sep 19;179(1):219-235.e21. doi: 10.1016/j.cell.2019.08.032. Epub 2019 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验