Suppr超能文献

伴侣蛋白介导的蛋白酶体核心颗粒组装——最新进展和结构见解。

Chaperone-mediated assembly of the proteasome core particle - recent developments and structural insights.

机构信息

Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.

Harvard Cryo-Electron Microscopy Center for Structural Biology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA.

出版信息

J Cell Sci. 2022 Apr 15;135(8). doi: 10.1242/jcs.259622. Epub 2022 Apr 22.

Abstract

Much of cellular activity is mediated by large multisubunit complexes. However, many of these complexes are too complicated to assemble spontaneously. Instead, their biogenesis is facilitated by dedicated chaperone proteins, which are themselves excluded from the final product. This is the case for the proteasome, a ubiquitous and highly conserved cellular regulator that mediates most selective intracellular protein degradation in eukaryotes. The proteasome consists of two subcomplexes: the core particle (CP), where proteolysis occurs, and the regulatory particle (RP), which controls substrate access to the CP. Ten chaperones function in proteasome biogenesis. Here, we review the pathway of CP biogenesis, which requires five of these chaperones and proceeds through a highly ordered multistep pathway. We focus on recent advances in our understanding of CP assembly, with an emphasis on structural insights. This pathway of CP biogenesis represents one of the most dramatic examples of chaperone-mediated assembly and provides a paradigm for understanding how large multisubunit complexes can be produced.

摘要

细胞的许多活动都是由大型多亚基复合物介导的。然而,许多这样的复合物过于复杂,无法自发组装。相反,它们的生物发生是由专门的伴侣蛋白来促进的,而这些伴侣蛋白本身就被排除在最终产物之外。这就是蛋白酶体的情况,它是一种普遍存在且高度保守的细胞调节剂,介导真核生物中大多数选择性的细胞内蛋白质降解。蛋白酶体由两个亚基组成:核心颗粒 (CP),在这里发生蛋白水解,以及调节颗粒 (RP),它控制底物进入 CP。十种伴侣蛋白参与蛋白酶体的生物发生。在这里,我们回顾了 CP 生物发生的途径,其中需要这五种伴侣蛋白,并通过一个高度有序的多步骤途径进行。我们专注于我们对 CP 组装理解的最新进展,重点是结构上的见解。CP 生物发生的途径代表了伴侣蛋白介导的组装的最显著例子之一,并为理解如何产生大型多亚基复合物提供了范例。

相似文献

1
Chaperone-mediated assembly of the proteasome core particle - recent developments and structural insights.
J Cell Sci. 2022 Apr 15;135(8). doi: 10.1242/jcs.259622. Epub 2022 Apr 22.
2
Assembly chaperone Nas6 selectively destabilizes 26S proteasomes with defective regulatory particle-core particle interfaces.
J Biol Chem. 2023 Feb;299(2):102894. doi: 10.1016/j.jbc.2023.102894. Epub 2023 Jan 10.
3
Molecular architecture and assembly of the eukaryotic proteasome.
Annu Rev Biochem. 2013;82:415-45. doi: 10.1146/annurev-biochem-060410-150257. Epub 2013 Mar 13.
4
Visualizing chaperone-mediated multistep assembly of the human 20S proteasome.
Nat Struct Mol Biol. 2024 Aug;31(8):1176-1188. doi: 10.1038/s41594-024-01268-9. Epub 2024 Apr 10.
5
Assembly and function of the proteasome.
Methods Mol Biol. 2012;832:315-37. doi: 10.1007/978-1-61779-474-2_22.
6
Structures of chaperone-associated assembly intermediates reveal coordinated mechanisms of proteasome biogenesis.
Nat Struct Mol Biol. 2021 May;28(5):418-425. doi: 10.1038/s41594-021-00583-9. Epub 2021 Apr 12.
7
Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base.
Cell. 2009 May 29;137(5):887-99. doi: 10.1016/j.cell.2009.04.061. Epub 2009 May 14.
8
Assembly of the 20S proteasome.
Biochim Biophys Acta. 2014 Jan;1843(1):2-12. doi: 10.1016/j.bbamcr.2013.03.008. Epub 2013 Mar 16.
9
Chaperone-mediated pathway of proteasome regulatory particle assembly.
Nature. 2009 Jun 11;459(7248):861-5. doi: 10.1038/nature08063.
10
Chaperone-assisted assembly of the proteasome core particle.
Biochem Soc Trans. 2010 Feb;38(Pt 1):29-33. doi: 10.1042/BST0380029.

引用本文的文献

1
Customized Chromosomal Microarrays for Neurodevelopmental Disorders.
Genes (Basel). 2025 Jul 24;16(8):868. doi: 10.3390/genes16080868.
3
PI31 is a positive regulator of 20S immunoproteasome assembly.
J Cell Sci. 2025 May 15;138(10). doi: 10.1242/jcs.263887. Epub 2025 May 23.
5
PI31 is a positive regulator of 20S immunoproteasome assembly.
bioRxiv. 2025 Jan 15:2025.01.15.633194. doi: 10.1101/2025.01.15.633194.
7
Visualizing chaperone-mediated multistep assembly of the human 20S proteasome.
Nat Struct Mol Biol. 2024 Aug;31(8):1176-1188. doi: 10.1038/s41594-024-01268-9. Epub 2024 Apr 10.
8
Mechanism of autocatalytic activation during proteasome assembly.
Nat Struct Mol Biol. 2024 Aug;31(8):1167-1175. doi: 10.1038/s41594-024-01262-1. Epub 2024 Apr 10.
9
The coherence between PSMC6 and α-ring in the 26S proteasome is associated with Alzheimer's disease.
Front Mol Neurosci. 2024 Jan 31;16:1330853. doi: 10.3389/fnmol.2023.1330853. eCollection 2023.
10
Visualizing chaperone-mediated multistep assembly of the human 20S proteasome.
bioRxiv. 2024 Jan 28:2024.01.27.577538. doi: 10.1101/2024.01.27.577538.

本文引用的文献

3
Structures of chaperone-associated assembly intermediates reveal coordinated mechanisms of proteasome biogenesis.
Nat Struct Mol Biol. 2021 May;28(5):418-425. doi: 10.1038/s41594-021-00583-9. Epub 2021 Apr 12.
4
KLICK Syndrome Linked to a Mutation Has Features Suggestive of an Autoinflammatory Keratinization Disease.
Front Immunol. 2020 Apr 30;11:641. doi: 10.3389/fimmu.2020.00641. eCollection 2020.
5
Cryo-EM structures of the human PA200 and PA200-20S complex reveal regulation of proteasome gate opening and two PA200 apertures.
PLoS Biol. 2020 Mar 5;18(3):e3000654. doi: 10.1371/journal.pbio.3000654. eCollection 2020 Mar.
7
Characterization of Fully Recombinant Human 20S and 20S-PA200 Proteasome Complexes.
Mol Cell. 2019 Oct 3;76(1):138-147.e5. doi: 10.1016/j.molcel.2019.07.014. Epub 2019 Aug 28.
9
Novel proteasome assembly chaperone mutations in PSMG2/PAC2 cause the autoinflammatory interferonopathy CANDLE/PRAAS4.
J Allergy Clin Immunol. 2019 May;143(5):1939-1943.e8. doi: 10.1016/j.jaci.2018.12.1012. Epub 2019 Jan 18.
10
Protein Degradation and the Pathologic Basis of Disease.
Am J Pathol. 2019 Jan;189(1):94-103. doi: 10.1016/j.ajpath.2018.09.004. Epub 2018 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验