Suppr超能文献

SIMSI-Transfer:基于串联质谱聚类的磷酸化蛋白质组学和蛋白质组学等压标记数据缺失值的软件辅助减少。

SIMSI-Transfer: Software-Assisted Reduction of Missing Values in Phosphoproteomic and Proteomic Isobaric Labeling Data Using Tandem Mass Spectrum Clustering.

机构信息

Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany.

Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany.

出版信息

Mol Cell Proteomics. 2022 Aug;21(8):100238. doi: 10.1016/j.mcpro.2022.100238. Epub 2022 Apr 21.

Abstract

Isobaric stable isotope labeling techniques such as tandem mass tags (TMTs) have become popular in proteomics because they enable the relative quantification of proteins with high precision from up to 18 samples in a single experiment. While missing values in peptide quantification are rare in a single TMT experiment, they rapidly increase when combining multiple TMT experiments. As the field moves toward analyzing ever higher numbers of samples, tools that reduce missing values also become more important for analyzing TMT datasets. To this end, we developed SIMSI-Transfer (Similarity-based Isobaric Mass Spectra 2 [MS2] Identification Transfer), a software tool that extends our previously developed software MaRaCluster (© Matthew The) by clustering similar tandem MS2 from multiple TMT experiments. SIMSI-Transfer is based on the assumption that similarity-clustered MS2 spectra represent the same peptide. Therefore, peptide identifications made by database searching in one TMT batch can be transferred to another TMT batch in which the same peptide was fragmented but not identified. To assess the validity of this approach, we tested SIMSI-Transfer on masked search engine identification results and recovered >80% of the masked identifications while controlling errors in the transfer procedure to below 1% false discovery rate. Applying SIMSI-Transfer to six published full proteome and phosphoproteome datasets from the Clinical Proteomic Tumor Analysis Consortium led to an increase of 26 to 45% of identified MS2 spectra with TMT quantifications. This significantly decreased the number of missing values across batches and, in turn, increased the number of peptides and proteins identified in all TMT batches by 43 to 56% and 13 to 16%, respectively.

摘要

同位素质谱标签(TMT)等等压稳定同位素标记技术在蛋白质组学中变得非常流行,因为它们能够在单次实验中对多达 18 个样本中的蛋白质进行高精度的相对定量。虽然单个 TMT 实验中肽定量的缺失值很少见,但当组合多个 TMT 实验时,缺失值会迅速增加。随着该领域向分析越来越多的样本数量发展,减少缺失值的工具对于分析 TMT 数据集也变得越来越重要。为此,我们开发了 SIMSI-Transfer(基于相似性的等压质谱 2 [MS2]鉴定转移),这是一种软件工具,通过对来自多个 TMT 实验的相似串联 MS2 进行聚类,扩展了我们之前开发的 MaRaCluster 软件(©Matthew The)。SIMSI-Transfer 基于这样的假设:相似聚类的 MS2 谱代表相同的肽。因此,可以将在一个 TMT 批次中通过数据库搜索进行的肽鉴定转移到另一个 TMT 批次中,该批次中相同的肽已经被碎片化但未被鉴定。为了评估这种方法的有效性,我们在掩蔽搜索引擎鉴定结果上测试了 SIMSI-Transfer,并在控制转移过程中的错误率低于 1%的假发现率的情况下,恢复了 >80%的掩蔽鉴定。将 SIMSI-Transfer 应用于来自临床蛋白质组肿瘤分析联盟的六个已发表的完整蛋白质组和磷酸蛋白质组数据集,导致 TMT 定量的 MS2 谱鉴定增加了 26%到 45%。这显著减少了批次之间的缺失值数量,从而使所有 TMT 批次中鉴定的肽和蛋白质数量分别增加了 43%到 56%和 13%到 16%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd92/9389303/96fa4932a6f3/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验