McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt.
Physiol Rev. 2022 Oct 1;102(4):1721-1755. doi: 10.1152/physrev.00041.2021. Epub 2022 Apr 25.
As a central hub for cellular metabolism and intracellular signaling, the mitochondrion is a pivotal organelle, dysfunction of which has been linked to several human diseases including neurodegenerative disorders and in particular Parkinson's disease. An inherent challenge that mitochondria face is the continuous exposure to diverse stresses that increase their likelihood of dysregulation. In response, eukaryotic cells have evolved sophisticated quality control mechanisms to monitor, identify, repair, and/or eliminate abnormal or misfolded proteins within the mitochondrion and/or the dysfunctional mitochondrion itself. Chaperones identify unstable or otherwise abnormal conformations in mitochondrial proteins and can promote their refolding to recover their correct conformation and stability. However, if repair is not possible, the abnormal protein is selectively degraded to prevent potentially damaging interactions with other proteins or its oligomerization into toxic multimeric complexes. The autophagic-lysosomal system and the ubiquitin-proteasome system mediate the selective and targeted degradation of such abnormal or misfolded protein species. Mitophagy (a specific kind of autophagy) mediates the selective elimination of dysfunctional mitochondria, to prevent the deleterious effects of the dysfunctional organelles within the cell. Despite our increasing understanding of the molecular responses toward dysfunctional mitochondria, many key aspects remain relatively poorly understood. Here, we review the emerging mechanisms of mitochondrial quality control including quality control strategies coupled to mitochondrial import mechanisms. In addition, we review the molecular mechanisms regulating mitophagy, with an emphasis on the regulation of PINK1/Parkin-mediated mitophagy in cellular physiology and in the context of Parkinson's disease cell biology.
作为细胞代谢和细胞内信号转导的中心枢纽,线粒体是一个关键的细胞器,其功能障碍与几种人类疾病有关,包括神经退行性疾病,特别是帕金森病。线粒体面临的一个固有挑战是持续暴露于多种应激源,这增加了它们失调的可能性。作为回应,真核细胞已经进化出复杂的质量控制机制来监测、识别、修复和/或消除线粒体和/或功能失调的线粒体内部的异常或错误折叠的蛋白质。伴侣蛋白识别线粒体蛋白质中的不稳定或其他异常构象,并可以促进它们的重折叠以恢复其正确的构象和稳定性。然而,如果无法修复,则异常蛋白质被选择性降解,以防止其与其他蛋白质潜在的有害相互作用或其寡聚化为有毒的多聚体复合物。自噬溶酶体系统和泛素-蛋白酶体系统介导这种异常或错误折叠的蛋白质的选择性和靶向降解。线粒体自噬(一种特殊的自噬)介导功能失调的线粒体的选择性消除,以防止细胞内功能失调的细胞器的有害影响。尽管我们对功能失调的线粒体的分子反应的理解不断增加,但许多关键方面仍相对了解甚少。在这里,我们综述了线粒体质量控制的新兴机制,包括与线粒体输入机制偶联的质量控制策略。此外,我们综述了调节线粒体自噬的分子机制,重点介绍了 PINK1/Parkin 介导的线粒体自噬在细胞生理学和帕金森病细胞生物学中的调节。