Suppr超能文献

基于机器学习的 PET 解聚用水解酶工程。

Machine learning-aided engineering of hydrolases for PET depolymerization.

机构信息

McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.

Department of Chemistry, The University of Texas at Austin, Austin, TX, USA.

出版信息

Nature. 2022 Apr;604(7907):662-667. doi: 10.1038/s41586-022-04599-z. Epub 2022 Apr 27.

Abstract

Plastic waste poses an ecological challenge and enzymatic degradation offers one, potentially green and scalable, route for polyesters waste recycling. Poly(ethylene terephthalate) (PET) accounts for 12% of global solid waste, and a circular carbon economy for PET is theoretically attainable through rapid enzymatic depolymerization followed by repolymerization or conversion/valorization into other products. Application of PET hydrolases, however, has been hampered by their lack of robustness to pH and temperature ranges, slow reaction rates and inability to directly use untreated postconsumer plastics. Here, we use a structure-based, machine learning algorithm to engineer a robust and active PET hydrolase. Our mutant and scaffold combination (FAST-PETase: functional, active, stable and tolerant PETase) contains five mutations compared to wild-type PETase (N233K/R224Q/S121E from prediction and D186H/R280A from scaffold) and shows superior PET-hydrolytic activity relative to both wild-type and engineered alternatives between 30 and 50 °C and a range of pH levels. We demonstrate that untreated, postconsumer-PET from 51 different thermoformed products can all be almost completely degraded by FAST-PETase in 1 week. FAST-PETase can also depolymerize untreated, amorphous portions of a commercial water bottle and an entire thermally pretreated water bottle at 50 ºC. Finally, we demonstrate a closed-loop PET recycling process by using FAST-PETase and resynthesizing PET from the recovered monomers. Collectively, our results demonstrate a viable route for enzymatic plastic recycling at the industrial scale.

摘要

塑料废物对生态构成挑战,而酶降解为聚酯废物回收提供了一条潜在的绿色且可扩展的途径。聚对苯二甲酸乙二醇酯(PET)占全球固体废物的 12%,通过快速酶解,随后进行重聚合或转化/增值为其他产品,理论上可以实现 PET 的循环碳经济。然而,由于缺乏对 pH 值和温度范围的稳健性、反应速率慢以及无法直接使用未经处理的消费后塑料,PET 水解酶的应用受到了阻碍。在这里,我们使用基于结构的机器学习算法来设计一种稳健且具有活性的 PET 水解酶。与野生型 PET 酶相比,我们的突变体和支架组合(FAST-PETase:功能性、活性、稳定和耐受的 PET 酶)含有五个突变(来自预测的 N233K/R224Q/S121E 和来自支架的 D186H/R280A),在 30 至 50°C 和一系列 pH 值范围内,与野生型和工程替代物相比,具有更高的 PET 水解活性。我们证明,未经处理的、来自 51 种不同热成型产品的消费后-PET 可以在 1 周内被 FAST-PETase 几乎完全降解。FAST-PETase 还可以在 50°C 下分解商用水瓶的未处理、无定形部分和整个热预处理水瓶。最后,我们通过使用 FAST-PETase 从回收的单体重新合成 PET,展示了一个闭环 PET 回收过程。总的来说,我们的结果表明,在工业规模上,酶法塑料回收是一种可行的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验