Suppr超能文献

通过结合地理探测器和贝叶斯网络来识别城市要素对道路沉积物和相关磷的空间影响。

Identifying spatial influence of urban elements on road-deposited sediment and the associated phosphorus by coupling Geodetector and Bayesian Networks.

机构信息

State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.

State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

J Environ Manage. 2022 Aug 1;315:115170. doi: 10.1016/j.jenvman.2022.115170. Epub 2022 Apr 29.

Abstract

Elevated particles and phosphorus washed from road-deposited sediment (RDS) are noteworthy causes of eutrophication in urban water bodies. Identifying how urban elements (e.g., dwellings, roads) spatially influence RDS and the associated phosphorus can help pinpoint the primary management areas for RDS pollution and therefore effectively mitigate this problem. This study investigated spatial influence of urban elements on RDS build-up load and phosphorus load in Hanyang district of Wuhan city in central China. Bayesian Networks (BNs), combined with geographical detector (Geodetector) and correlation analysis, were applied to quantify spatial association between kernel density of urban elements, RDS build-up load and phosphorus load in RDS. Results showed that (1) areas with higher density of factories related elements usually had elevated level of RDS build-up load, aluminum-bound phosphorus (Al-P), occluded phosphorus (Oc-P), organophosphorus (Or-P). Higher load of RDS associated iron-bound phosphorus (Fe-P) and apatite phosphorus (Ca-P) usually occurred where dwellings, catering, and entertainment related elements were concentrated. (2) Urban elements mainly showed positive correlation with RDS build-up load, Fe-P, Ca-P, De-P (detrital apatite phosphorus), while they chiefly showed negative correlation with Ex-P (exchangeable phosphorus), Al-P, Oc-P, and Or-P. Bus stations, dwellings, and factories related elements had relatively strong determinant power over spatial stratified heterogeneity of RDS and RDS-associated phosphorus. (3) Geodetector and correlation analysis could boost factors filtering and construction of network structures in the process of developing BNs models. The developed BNs resulted in sound prediction of <150 μm RDS build-up load and phosphorus load, given that the prediction accuracy of models ranged from 0.532 to 0.657. These findings demonstrate that urban elements are useful spatial predictors of RDS pollution, and coupling Geodetector and BNs is promising in RDS pollution prediction and supporting urban nonpoint source pollution management.

摘要

道路沉积物(RDS)中冲刷出的升高颗粒和磷是城市水体富营养化的重要原因。确定城市元素(例如住宅、道路)如何在空间上影响 RDS 及其相关磷,可以帮助确定 RDS 污染的主要管理区域,从而有效缓解这一问题。本研究调查了中国中部武汉市汉阳区城市元素对 RDS 积聚负荷和磷负荷的空间影响。贝叶斯网络(BNs)结合地理探测器(Geodetector)和相关分析,用于量化城市元素的核密度、RDS 积聚负荷和 RDS 中磷负荷之间的空间关联。结果表明:(1)与工厂相关元素密度较高的区域通常具有较高的 RDS 积聚负荷、铝结合磷(Al-P)、封闭磷(Oc-P)和有机磷(Or-P)水平。住宅、餐饮和娱乐相关元素集中的地区,通常会出现 RDS 相关铁结合磷(Fe-P)和磷灰石磷(Ca-P)的高负荷。(2)城市元素主要与 RDS 积聚负荷、Fe-P、Ca-P、De-P(碎屑磷灰石磷)呈正相关,而与 Ex-P(可交换磷)、Al-P、Oc-P 和 Or-P 呈负相关。公共汽车站、住宅和工厂相关元素对 RDS 和 RDS 相关磷的空间分层异质性具有相对较强的决定力。(3)地理探测器和相关分析可以在开发 BNs 模型的过程中增强因素筛选和网络结构构建。所开发的 BNs 能够很好地预测<150μm 的 RDS 积聚负荷和磷负荷,因为模型的预测精度范围在 0.532 到 0.657 之间。这些发现表明,城市元素是 RDS 污染的有用空间预测因子,结合地理探测器和 BNs 在 RDS 污染预测和支持城市非点源污染管理方面具有广阔的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验