Biophysics Program, Stanford University School of Medicine, Stanford, California, USA; email:
Department of Bioengineering, Stanford University, Stanford, California, USA.
Annu Rev Biophys. 2022 May 9;51:499-526. doi: 10.1146/annurev-biophys-112221-074832.
Temperature impacts biological systems across all length and timescales. Cells and the enzymes that comprise them respond to temperature fluctuations on short timescales, and temperature can affect protein folding, the molecular composition of cells, and volume expansion. Entire ecosystems exhibit temperature-dependent behaviors, and global warming threatens to disrupt thermal homeostasis in microbes that are important for human and planetary health. Intriguingly, the growth rate of most species follows the Arrhenius law of equilibrium thermodynamics, with an activation energy similar to that of individual enzymes but with maximal growth rates and over temperature ranges that are species specific. In this review, we discuss how the temperature dependence of critical cellular processes, such as the central dogma and membrane fluidity, contributes to the temperature dependence of growth. We conclude with a discussion of adaptation to temperature shifts and the effects of temperature on evolution and on the properties of microbial ecosystems.
温度对所有长度和时间尺度的生物系统都有影响。细胞及其组成的酶会对短时间尺度的温度波动做出反应,温度还会影响蛋白质折叠、细胞的分子组成和体积膨胀。整个生态系统都表现出对温度有依赖性的行为,而全球变暖则有可能破坏对人类和行星健康都很重要的微生物的热平衡。有趣的是,大多数物种的生长速度都遵循平衡热力学的阿伦尼乌斯定律,其激活能与单个酶的相似,但最大生长速率和温度范围则是物种特异性的。在这篇综述中,我们讨论了关键细胞过程(如中心法则和膜流动性)的温度依赖性如何导致生长的温度依赖性。最后我们讨论了对温度变化的适应以及温度对进化和微生物生态系统特性的影响。