Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
J Control Release. 2022 Jul;347:476-488. doi: 10.1016/j.jconrel.2022.05.023. Epub 2022 May 20.
Despite success in vaccinating populations against SARS-CoV-2, concerns about immunity duration, continued efficacy against emerging variants, protection from infection and transmission, and worldwide vaccine availability remain. Molecular adjuvants targeting pattern recognition receptors (PRRs) on antigen-presenting cells (APCs) could improve and broaden the efficacy and durability of vaccine responses. Native SARS-CoV-2 infection stimulates various PRRs, including toll-like receptors (TLRs) and retinoic acid-inducible gene I (RIG-I)-like receptors. We hypothesized that targeting PRRs using molecular adjuvants on nanoparticles (NPs) along with a stabilized spike protein antigen could stimulate broad and efficient immune responses. Adjuvants targeting TLR4 (MPLA), TLR7/8 (R848), TLR9 (CpG), and RIG-I (PUUC) delivered on degradable polymer NPs were combined with the S1 subunit of spike protein and assessed in vitro with isogeneic mixed lymphocyte reactions (isoMLRs). For in vivo studies, the adjuvant-NPs were combined with stabilized spike protein or spike-conjugated NPs and assessed using a two-dose intranasal or intramuscular vaccination model in mice. Combination adjuvant-NPs simultaneously targeting TLR and RIG-I receptors (MPLA+PUUC, CpG+PUUC, and R848+PUUC) differentially induced T cell proliferation and increased proinflammatory cytokine secretion by APCs in vitro. When delivered intranasally, MPLA+PUUC NPs enhanced CD4CD44 activated memory T cell responses against spike protein in the lungs while MPLA NPs increased anti-spike IgA in the bronchoalveolar (BAL) fluid and IgG in the blood. Following intramuscular delivery, PUUC NPs induced strong humoral immune responses, characterized by increases in anti-spike IgG in the blood and germinal center B cell populations (GL7 and BCL6 B cells) in the draining lymph nodes (dLNs). MPLA+PUUC NPs further boosted spike protein-neutralizing antibody titers and T follicular helper cell populations in the dLNs. These results suggest that protein subunit vaccines with particle-delivered molecular adjuvants targeting TLR4 and RIG-I could lead to robust and unique route-specific adaptive immune responses against SARS-CoV-2.
尽管在人群中接种 SARS-CoV-2 疫苗已取得成功,但人们仍对免疫持续时间、对新兴变异体的持续有效性、对感染和传播的保护以及全球疫苗供应存在担忧。针对抗原呈递细胞 (APC) 上模式识别受体 (PRR) 的分子佐剂可以改善和拓宽疫苗反应的效果和持久性。天然 SARS-CoV-2 感染会刺激多种 PRR,包括 Toll 样受体 (TLR) 和视黄酸诱导基因 I (RIG-I) 样受体。我们假设,使用纳米颗粒 (NP) 上的分子佐剂靶向 PRR,同时结合稳定的刺突蛋白抗原,可刺激广泛而有效的免疫反应。针对 TLR4 (MPLA)、TLR7/8 (R848)、TLR9 (CpG) 和 RIG-I (PUUC) 的佐剂被递送到可降解聚合物 NP 上,并与 S1 亚基的刺突蛋白在同种混合淋巴细胞反应 (isoMLR) 中进行体外评估。对于体内研究,将佐剂-NP 与稳定的刺突蛋白或刺突缀合 NP 结合,并在小鼠中使用两剂量鼻内或肌肉内接种模型进行评估。同时靶向 TLR 和 RIG-I 受体的组合佐剂-NP(MPLA+PUUC、CpG+PUUC 和 R848+PUUC) 可在体外不同程度地诱导 T 细胞增殖,并增加 APC 中促炎细胞因子的分泌。当经鼻内给药时,MPLA+PUUC NPs 增强了肺部针对刺突蛋白的 CD4CD44 激活记忆 T 细胞反应,而 MPLA NPs 增加了支气管肺泡 (BAL) 液中的抗刺突 IgA 和血液中的 IgG。肌肉内给药后,PUUC NPs 诱导了强烈的体液免疫反应,表现为血液中抗刺突 IgG 增加,引流淋巴结 (dLNs) 中的生发中心 B 细胞群体 (GL7 和 BCL6 B 细胞) 增加。MPLA+PUUC NPs 进一步提高了 dLNs 中刺突蛋白中和抗体滴度和滤泡辅助 T 细胞群体。这些结果表明,针对 TLR4 和 RIG-I 的靶向佐剂的蛋白亚单位疫苗与颗粒递送相结合,可能会引发针对 SARS-CoV-2 的强大且独特的特定途径适应性免疫反应。