Suppr超能文献

活力四射:拟激酶信号转导的新兴原理。

Looking lively: emerging principles of pseudokinase signaling.

机构信息

Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06505, USA; Yale Cancer Biology Institute, Yale West Campus, West Haven, CT 06516, USA.

出版信息

Trends Biochem Sci. 2022 Oct;47(10):875-891. doi: 10.1016/j.tibs.2022.04.011. Epub 2022 May 16.

Abstract

Progress towards understanding catalytically 'dead' protein kinases - pseudokinases - in biology and disease has hastened over the past decade. An especially lively area for structural biology, pseudokinases appear to be strikingly similar to their kinase relatives, despite lacking key catalytic residues. Distinct active- and inactive-like conformation states, which are crucial for regulating bona fide protein kinases, are conserved in pseudokinases and appear to be essential for function. We discuss recent structural data on conformational transitions and nucleotide binding by pseudokinases, from which some common principles emerge. In both pseudokinases and bona fide kinases, a conformational toggle appears to control the ability to interact with signaling effectors. We also discuss how biasing this conformational toggle may provide opportunities to target pseudokinases pharmacologically in disease.

摘要

在过去的十年中,人们对生物学和疾病中催化“失活”的蛋白激酶 - 拟激酶的理解取得了迅速进展。拟激酶是结构生物学中一个特别活跃的领域,尽管它们缺乏关键的催化残基,但与激酶家族非常相似。对于调节真正的蛋白激酶至关重要的独特的激活和失活样构象状态在拟激酶中得到保守,并似乎对于功能是必需的。我们讨论了最近关于拟激酶构象转变和核苷酸结合的结构数据,从中得出了一些共同的原则。在拟激酶和真正的激酶中,构象转换似乎控制了与信号效应物相互作用的能力。我们还讨论了如何偏向这种构象转换可能为疾病中的拟激酶提供药理学靶向的机会。

相似文献

1
Looking lively: emerging principles of pseudokinase signaling.
Trends Biochem Sci. 2022 Oct;47(10):875-891. doi: 10.1016/j.tibs.2022.04.011. Epub 2022 May 16.
2
Prospects for pharmacological targeting of pseudokinases.
Nat Rev Drug Discov. 2019 Jul;18(7):501-526. doi: 10.1038/s41573-019-0018-3.
4
Pseudokinases repurpose flexibility signatures associated with the protein kinase fold for noncatalytic roles.
Proteins. 2022 Mar;90(3):747-764. doi: 10.1002/prot.26271. Epub 2021 Nov 18.
5
A pickup in pseudokinase activity.
Biochem Soc Trans. 2013 Aug;41(4):987-94. doi: 10.1042/BST20130110.
6
Metal coordination in kinases and pseudokinases.
Biochem Soc Trans. 2017 Jun 15;45(3):653-663. doi: 10.1042/BST20160327.
7
Techniques to examine nucleotide binding by pseudokinases.
Biochem Soc Trans. 2013 Aug;41(4):975-80. doi: 10.1042/BST20130075.
8
Structural Insights into Pseudokinase Domains of Receptor Tyrosine Kinases.
Mol Cell. 2020 Aug 6;79(3):390-405.e7. doi: 10.1016/j.molcel.2020.06.018. Epub 2020 Jul 2.
9
Pseudokinases: Prospects for expanding the therapeutic targets armamentarium.
Adv Protein Chem Struct Biol. 2021;124:121-185. doi: 10.1016/bs.apcsb.2020.09.004. Epub 2020 Oct 17.
10
A historical overview of protein kinases and their targeted small molecule inhibitors.
Pharmacol Res. 2015 Oct;100:1-23. doi: 10.1016/j.phrs.2015.07.010. Epub 2015 Jul 21.

引用本文的文献

1
The rise of AMPylation: from bacterial beginnings to modern implications in health and disease.
Biochem Soc Trans. 2025 Aug 29;53(4):763-774. doi: 10.1042/BST20253056.
5
A conserved juxtamembrane motif in plant NFR5 receptors is essential for root nodule symbiosis.
Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2405671121. doi: 10.1073/pnas.2405671121. Epub 2024 Nov 4.
7
Trans-activating mutations of the pseudokinase ERBB3.
Oncogene. 2024 Jul;43(29):2253-2265. doi: 10.1038/s41388-024-03070-9. Epub 2024 May 28.
8
Recent insights into the therapeutic strategies targeting the pseudokinase PTK7 in cancer.
Oncogene. 2024 Jun;43(26):1973-1984. doi: 10.1038/s41388-024-03060-x. Epub 2024 May 21.
9
Kinome-Wide Synthetic Lethal Screen Identifies PANK4 as a Modulator of Temozolomide Resistance in Glioblastoma.
Adv Sci (Weinh). 2024 Apr;11(15):e2306027. doi: 10.1002/advs.202306027. Epub 2024 Feb 14.
10
Redefining pseudokinases: A look at the untapped enzymatic potential of pseudokinases.
IUBMB Life. 2023 Apr;75(4):370-376. doi: 10.1002/iub.2698. Epub 2023 Jan 5.

本文引用的文献

1
The mechanism of RNA capping by SARS-CoV-2.
Nature. 2022 Sep;609(7928):793-800. doi: 10.1038/s41586-022-05185-z. Epub 2022 Aug 9.
2
Structure of a Janus kinase cytokine receptor complex reveals the basis for dimeric activation.
Science. 2022 Apr 8;376(6589):163-169. doi: 10.1126/science.abn8933. Epub 2022 Mar 10.
3
Kincore: a web resource for structural classification of protein kinases and their inhibitors.
Nucleic Acids Res. 2022 Jan 7;50(D1):D654-D664. doi: 10.1093/nar/gkab920.
4
Moonlighting functions of metabolic enzymes and metabolites in cancer.
Mol Cell. 2021 Sep 16;81(18):3760-3774. doi: 10.1016/j.molcel.2021.08.031.
5
Activation loop phosphorylation of a non-RD receptor kinase initiates plant innate immune signaling.
Proc Natl Acad Sci U S A. 2021 Sep 21;118(38). doi: 10.1073/pnas.2108242118.
7
Structural and mechanistic basis for protein glutamylation by the kinase fold.
Mol Cell. 2021 Nov 4;81(21):4527-4539.e8. doi: 10.1016/j.molcel.2021.08.007. Epub 2021 Aug 17.
8
Choline kinase alpha 2 acts as a protein kinase to promote lipolysis of lipid droplets.
Mol Cell. 2021 Jul 1;81(13):2722-2735.e9. doi: 10.1016/j.molcel.2021.05.005. Epub 2021 Jun 1.
9
From structure to the dynamic regulation of a molecular switch: A journey over 3 decades.
J Biol Chem. 2021 Jan-Jun;296:100746. doi: 10.1016/j.jbc.2021.100746. Epub 2021 May 3.
10
There's more to death than life: Noncatalytic functions in kinase and pseudokinase signaling.
J Biol Chem. 2021 Jan-Jun;296:100705. doi: 10.1016/j.jbc.2021.100705. Epub 2021 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验