Suppr超能文献

用纯化的人类蛋白质实现快速有效的 DNA 复制。

Fast and efficient DNA replication with purified human proteins.

机构信息

MRC Laboratory of Molecular Biology, Cambridge, UK.

出版信息

Nature. 2022 Jun;606(7912):204-210. doi: 10.1038/s41586-022-04759-1. Epub 2022 May 18.

Abstract

Chromosome replication is performed by a complex and intricate ensemble of proteins termed the replisome, where the DNA polymerases Polδ and Polε, DNA polymerase α-primase (Polα) and accessory proteins including AND-1, CLASPIN and TIMELESS-TIPIN (respectively known as Ctf4, Mrc1 and Tof1-Csm3 in Saccharomyces cerevisiae) are organized around the CDC45-MCM-GINS (CMG) replicative helicase. Because a functional human replisome has not been reconstituted from purified proteins, how these factors contribute to human DNA replication and whether additional proteins are required for optimal DNA synthesis are poorly understood. Here we report the biochemical reconstitution of human replisomes that perform fast and efficient DNA replication using 11 purified human replication factors made from 43 polypeptides. Polε, but not Polδ, is crucial for optimal leading-strand synthesis. Unexpectedly, Polε-mediated leading-strand replication is highly dependent on the sliding-clamp processivity factor PCNA and the alternative clamp loader complex CTF18-RFC. We show how CLASPIN and TIMELESS-TIPIN contribute to replisome progression and demonstrate that, in contrast to the budding yeast replisome, AND-1 directly augments leading-strand replication. Moreover, although AND-1 binds to Polα, the interaction is dispensable for lagging-strand replication, indicating that Polα is functionally recruited via an AND-1-independent mechanism for priming in the human replisome. Collectively, our work reveals how the human replisome achieves fast and efficient leading-strand and lagging-strand DNA replication, and provides a powerful system for future studies of the human replisome and its interactions with other DNA metabolic processes.

摘要

染色体复制是由一组称为复制体的复杂而精细的蛋白质完成的,其中 DNA 聚合酶 Polδ 和 Polε、DNA 聚合酶α-引发酶(Polα)和辅助蛋白,包括 AND-1、CLASPIN 和 TIMELSS-TIPIN(在酿酒酵母中分别称为 Ctf4、Mrc1 和 Tof1-Csm3),围绕 CDC45-MCM-GINS(CMG)复制螺旋酶组织。由于尚未从纯化的蛋白质中重建功能性人类复制体,因此这些因素如何促进人类 DNA 复制以及是否需要其他蛋白质以实现最佳 DNA 合成仍知之甚少。在这里,我们报告了使用 11 种从 43 种多肽纯化得到的人类复制因子的生化重建,这些因子能够快速有效地进行 DNA 复制。Polε 而非 Polδ 对最优前导链合成至关重要。出乎意料的是,Polε 介导的前导链复制高度依赖于滑动夹子过程ivity 因子 PCNA 和替代夹子加载器复合物 CTF18-RFC。我们展示了 CLASPIN 和 TIMELSS-TIPIN 如何促进复制体的进展,并证明与芽殖酵母复制体相反,AND-1 直接增强前导链复制。此外,尽管 AND-1 与 Polα 结合,但这种相互作用对于滞后链复制是可有可无的,这表明 Polα 通过一种与 AND-1 无关的机制被功能性募集用于在人类复制体中引发。总之,我们的工作揭示了人类复制体如何实现快速高效的前导链和滞后链 DNA 复制,并提供了一个强大的系统,用于未来研究人类复制体及其与其他 DNA 代谢过程的相互作用。

相似文献

1
Fast and efficient DNA replication with purified human proteins.
Nature. 2022 Jun;606(7912):204-210. doi: 10.1038/s41586-022-04759-1. Epub 2022 May 18.
2
Competition for the nascent leading strand shapes the requirements for PCNA loading in the replisome.
EMBO J. 2025 Apr;44(8):2298-2322. doi: 10.1038/s44318-025-00386-4. Epub 2025 Feb 28.
3
A Ctf4 trimer couples the CMG helicase to DNA polymerase α in the eukaryotic replisome.
Nature. 2014 Jun 12;510(7504):293-297. doi: 10.1038/nature13234. Epub 2014 May 4.
4
Cryo-EM Structure of the Fork Protection Complex Bound to CMG at a Replication Fork.
Mol Cell. 2020 Jun 4;78(5):926-940.e13. doi: 10.1016/j.molcel.2020.04.012. Epub 2020 May 4.
5
Single-molecule visualization of leading-strand synthesis reveals dynamic interaction between MTC and the replisome.
Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):10630-10635. doi: 10.1073/pnas.1711291114. Epub 2017 Sep 18.
6
The Eukaryotic Replication Machine.
Enzymes. 2016;39:191-229. doi: 10.1016/bs.enz.2016.03.004. Epub 2016 Apr 19.
7
A common mechanism for recruiting the Rrm3 and RTEL1 accessory helicases to the eukaryotic replisome.
EMBO J. 2024 Sep;43(18):3846-3875. doi: 10.1038/s44318-024-00168-4. Epub 2024 Jul 22.
8
How the Eukaryotic Replisome Achieves Rapid and Efficient DNA Replication.
Mol Cell. 2017 Jan 5;65(1):105-116. doi: 10.1016/j.molcel.2016.11.017. Epub 2016 Dec 15.
9
Structure of a human replisome shows the organisation and interactions of a DNA replication machine.
EMBO J. 2021 Dec 1;40(23):e108819. doi: 10.15252/embj.2021108819. Epub 2021 Oct 25.
10
Synergism between CMG helicase and leading strand DNA polymerase at replication fork.
Nat Commun. 2023 Sep 20;14(1):5849. doi: 10.1038/s41467-023-41506-0.

引用本文的文献

1
Compact Origins and Where to Find Them: ORC's Guide to Genome-Wide Licensing.
Bioessays. 2025 Jul;47(7):e70018. doi: 10.1002/bies.70018. Epub 2025 May 19.
2
Always on the Move: Overview on Chromatin Dynamics within Nuclear Processes.
Biochemistry. 2025 May 20;64(10):2138-2153. doi: 10.1021/acs.biochem.5c00114. Epub 2025 May 1.
3
Effects of hydroxypropyl starch on intestinal health and transcriptome of geese.
Sci Rep. 2025 Apr 10;15(1):12284. doi: 10.1038/s41598-025-96020-8.
4
5
G-quadruplex-stalled eukaryotic replisome structure reveals helical inchworm DNA translocation.
Science. 2025 Mar 7;387(6738):eadt1978. doi: 10.1126/science.adt1978.
6
Competition for the nascent leading strand shapes the requirements for PCNA loading in the replisome.
EMBO J. 2025 Apr;44(8):2298-2322. doi: 10.1038/s44318-025-00386-4. Epub 2025 Feb 28.
7
Mechanism for local attenuation of DNA replication at double-strand breaks.
Nature. 2025 Mar;639(8056):1084-1092. doi: 10.1038/s41586-024-08557-9. Epub 2025 Feb 19.
8
Quantitative Chromatin Protein Dynamics During Replication Origin Firing in Human Cells.
Mol Cell Proteomics. 2025 Mar;24(3):100915. doi: 10.1016/j.mcpro.2025.100915. Epub 2025 Jan 27.
9
A tale of two strands: Decoding chromatin replication through strand-specific sequencing.
Mol Cell. 2025 Jan 16;85(2):238-261. doi: 10.1016/j.molcel.2024.10.035.
10
Stabilization of expandable DNA repeats by the replication factor Mcm10 promotes cell viability.
Nat Commun. 2024 Dec 3;15(1):10532. doi: 10.1038/s41467-024-54977-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验