Suppr超能文献

可逆赖氨酸靶向探针揭示基于停留时间的激酶选择性。

Reversible lysine-targeted probes reveal residence time-based kinase selectivity.

机构信息

Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.

Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.

出版信息

Nat Chem Biol. 2022 Sep;18(9):934-941. doi: 10.1038/s41589-022-01019-1. Epub 2022 May 19.

Abstract

The expansion of the target landscape of covalent inhibitors requires the engagement of nucleophiles beyond cysteine. Although the conserved catalytic lysine in protein kinases is an attractive candidate for a covalent approach, selectivity remains an obvious challenge. Moreover, few covalent inhibitors have been shown to engage the kinase catalytic lysine in animals. We hypothesized that reversible, lysine-targeted inhibitors could provide sustained kinase engagement in vivo, with selectivity driven in part by differences in residence time. By strategically linking benzaldehydes to a promiscuous kinase binding scaffold, we developed chemoproteomic probes that reversibly and covalently engage >200 protein kinases in cells and mice. Probe-kinase residence time was dramatically enhanced by a hydroxyl group ortho to the aldehyde. Remarkably, only a few kinases, including Aurora A, showed sustained, quasi-irreversible occupancy in vivo, the structural basis for which was revealed by X-ray crystallography. We anticipate broad application of salicylaldehyde-based probes to proteins that lack a druggable cysteine.

摘要

靶向共价抑制剂的靶标范围的扩大需要涉及半胱氨酸以外的亲核试剂。尽管蛋白激酶中保守的催化赖氨酸是共价方法的一个有吸引力的候选物,但选择性仍然是一个明显的挑战。此外,很少有共价抑制剂已被证明能在动物中与激酶的催化赖氨酸结合。我们假设可逆的、针对赖氨酸的抑制剂可以在体内提供持续的激酶结合,其选择性部分由停留时间的差异驱动。通过将苯甲醛策略性地连接到一个混杂的激酶结合支架上,我们开发了化学蛋白质组学探针,这些探针可以在细胞和小鼠中可逆且共价地结合超过 200 种蛋白激酶。醛基邻位的羟基极大地增强了探针-激酶的停留时间。值得注意的是,只有少数激酶,包括 Aurora A,在体内表现出持续的、准不可逆的占据,其结构基础通过 X 射线晶体学揭示。我们预计基于水杨醛的探针将广泛应用于缺乏可成药半胱氨酸的蛋白质。

相似文献

1
Reversible lysine-targeted probes reveal residence time-based kinase selectivity.
Nat Chem Biol. 2022 Sep;18(9):934-941. doi: 10.1038/s41589-022-01019-1. Epub 2022 May 19.
2
Targeting protein kinases with selective and semipromiscuous covalent inhibitors.
Methods Enzymol. 2014;548:93-116. doi: 10.1016/B978-0-12-397918-6.00004-5.
3
Cell-Active, Reversible, and Irreversible Covalent Inhibitors That Selectively Target the Catalytic Lysine of BCR-ABL Kinase.
Angew Chem Int Ed Engl. 2022 Jun 27;61(26):e202203878. doi: 10.1002/anie.202203878. Epub 2022 Apr 29.
4
Assessing Lysine and Cysteine Reactivities for Designing Targeted Covalent Kinase Inhibitors.
J Am Chem Soc. 2019 Apr 24;141(16):6553-6560. doi: 10.1021/jacs.8b13248. Epub 2019 Apr 16.
5
Selectively Targeting the Kinome-Conserved Lysine of PI3Kδ as a General Approach to Covalent Kinase Inhibition.
J Am Chem Soc. 2018 Jan 24;140(3):932-939. doi: 10.1021/jacs.7b08979. Epub 2018 Jan 9.
6
Reactive Chemical Probes: Beyond the Kinase Cysteinome.
Angew Chem Int Ed Engl. 2018 Jul 20;57(30):9220-9223. doi: 10.1002/anie.201802693. Epub 2018 Jun 12.
7
Global Reactivity Profiling of the Catalytic Lysine in Human Kinome for Covalent Inhibitor Development.
Angew Chem Int Ed Engl. 2024 Mar 18;63(12):e202316394. doi: 10.1002/anie.202316394. Epub 2024 Feb 14.
8
Small Molecule-Induced Post-Translational Acetylation of Catalytic Lysine of Kinases in Mammalian Cells.
J Am Chem Soc. 2024 Aug 28;146(34):23978-23988. doi: 10.1021/jacs.4c07181. Epub 2024 Aug 20.
9
The Cysteinome of Protein Kinases as a Target in Drug Development.
Angew Chem Int Ed Engl. 2018 Apr 9;57(16):4372-4385. doi: 10.1002/anie.201707875. Epub 2018 Feb 2.
10
Lysine-Targeted Inhibitors and Chemoproteomic Probes.
Annu Rev Biochem. 2019 Jun 20;88:365-381. doi: 10.1146/annurev-biochem-061516-044805. Epub 2019 Jan 11.

引用本文的文献

2
COOKIE-Pro: Covalent Inhibitor Binding Kinetics Profiling on the Proteome Scale.
bioRxiv. 2025 Jun 22:2025.06.19.660637. doi: 10.1101/2025.06.19.660637.
3
Lysine targeting covalent inhibitors of malarial kinase CLK3.
RSC Med Chem. 2025 May 27. doi: 10.1039/d5md00335k.
4
Computational Design of Lysine Targeting Covalent Binders Using Rosetta.
J Chem Inf Model. 2025 May 29. doi: 10.1021/acs.jcim.5c00212.
5
Advancing Covalent Ligand and Drug Discovery beyond Cysteine.
Chem Rev. 2025 Jul 23;125(14):6653-6684. doi: 10.1021/acs.chemrev.5c00001. Epub 2025 May 22.
6
CellEKT: A Robust Chemical Proteomics Workflow to Profile Cellular Target Engagement of Kinase Inhibitors.
Mol Cell Proteomics. 2025 Apr 3;24(6):100961. doi: 10.1016/j.mcpro.2025.100961.
7
Mesoscale proximity labeling to study macro changes to chromatin occupancy.
bioRxiv. 2025 Mar 15:2025.03.13.643041. doi: 10.1101/2025.03.13.643041.
8
Site-specific molecular glues for the 14-3-3/Tau pS214 protein-protein interaction reversible covalent imine tethering.
RSC Med Chem. 2025 Feb 7;16(5):2190-2201. doi: 10.1039/d4md00833b. eCollection 2025 May 22.
9
Proteomic Ligandability Maps of Phosphorus(V) Stereoprobes Identify Covalent TLCD1 Inhibitors.
bioRxiv. 2025 Jan 31:2025.01.31.635883. doi: 10.1101/2025.01.31.635883.
10
Covalent Proximity Inducers.
Chem Rev. 2025 Jan 8;125(1):326-368. doi: 10.1021/acs.chemrev.4c00570. Epub 2024 Dec 18.

本文引用的文献

1
Expanding control of the tumor cell cycle with a CDK2/4/6 inhibitor.
Cancer Cell. 2021 Oct 11;39(10):1404-1421.e11. doi: 10.1016/j.ccell.2021.08.009. Epub 2021 Sep 13.
2
Pathogenic MAST3 Variants in the STK Domain Are Associated with Epilepsy.
Ann Neurol. 2021 Aug;90(2):274-284. doi: 10.1002/ana.26147. Epub 2021 Jul 13.
3
Discovery of PF-06873600, a CDK2/4/6 Inhibitor for the Treatment of Cancer.
J Med Chem. 2021 Jul 8;64(13):9056-9077. doi: 10.1021/acs.jmedchem.1c00159. Epub 2021 Jun 10.
4
KRAS Inhibition with Sotorasib in Advanced Solid Tumors.
N Engl J Med. 2020 Sep 24;383(13):1207-1217. doi: 10.1056/NEJMoa1917239. Epub 2020 Sep 20.
5
Curse or Cure? A Perspective on the Developability of Aldehydes as Active Pharmaceutical Ingredients.
J Med Chem. 2020 Dec 10;63(23):14357-14381. doi: 10.1021/acs.jmedchem.0c01177. Epub 2020 Sep 29.
6
Full-Featured, Real-Time Database Searching Platform Enables Fast and Accurate Multiplexed Quantitative Proteomics.
J Proteome Res. 2020 May 1;19(5):2026-2034. doi: 10.1021/acs.jproteome.9b00860. Epub 2020 Apr 6.
7
Discovery of Lysine-Targeted eIF4E Inhibitors through Covalent Docking.
J Am Chem Soc. 2020 Mar 18;142(11):4960-4964. doi: 10.1021/jacs.9b10377. Epub 2020 Mar 4.
8
Ligand Conformational Bias Drives Enantioselective Modification of a Surface-Exposed Lysine on Hsp90.
J Am Chem Soc. 2020 Feb 19;142(7):3392-3400. doi: 10.1021/jacs.9b09684. Epub 2020 Feb 3.
9
Discovery of a Covalent Inhibitor of KRAS (AMG 510) for the Treatment of Solid Tumors.
J Med Chem. 2020 Jan 9;63(1):52-65. doi: 10.1021/acs.jmedchem.9b01180. Epub 2019 Dec 24.
10
Covalent Inhibitors of Protein-Protein Interactions Targeting Lysine, Tyrosine, or Histidine Residues.
J Med Chem. 2019 Jun 13;62(11):5616-5627. doi: 10.1021/acs.jmedchem.9b00561. Epub 2019 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验