Computational Biology & Bioinformatics Graduate Program, Duke University, Durham, North Carolina 27708, USA.
Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA.
Genome Res. 2022 Jun;32(6):1183-1198. doi: 10.1101/gr.272203.120. Epub 2022 May 24.
Over a thousand different transcription factors (TFs) bind with varying occupancy across the human genome. Chromatin immunoprecipitation (ChIP) can assay occupancy genome-wide, but only one TF at a time, limiting our ability to comprehensively observe the TF occupancy landscape, let alone quantify how it changes across conditions. We developed TF occupancy profiler (TOP), a Bayesian hierarchical regression framework, to profile genome-wide quantitative occupancy of numerous TFs using data from a single chromatin accessibility experiment (DNase- or ATAC-seq). TOP is supervised, and its hierarchical structure allows it to predict the occupancy of any sequence-specific TF, even those never assayed with ChIP. We used TOP to profile the quantitative occupancy of hundreds of sequence-specific TFs at sites throughout the genome and examined how their occupancies changed in multiple contexts: in approximately 200 human cell types, through 12 h of exposure to different hormones, and across the genetic backgrounds of 70 individuals. TOP enables cost-effective exploration of quantitative changes in the landscape of TF binding.
超过一千种不同的转录因子(TFs)以不同的占据率结合在人类基因组上。染色质免疫沉淀(ChIP)可以在全基因组范围内检测占据率,但一次只能检测一个 TF,限制了我们全面观察 TF 占据率图谱的能力,更不用说定量观察它如何随条件变化了。我们开发了 TF 占据率分析器(TOP),这是一个贝叶斯层次回归框架,用于使用单个染色质可及性实验(DNase 或 ATAC-seq)的数据来分析大量 TF 的全基因组定量占据率。TOP 是有监督的,其层次结构允许它预测任何序列特异性 TF 的占据率,即使是那些从未用 ChIP 检测过的 TF 也可以预测。我们使用 TOP 分析了数百个序列特异性 TF 在基因组各处的定量占据率,并研究了它们的占据率在多种情况下如何变化:在大约 200 个人类细胞类型中,在暴露于不同激素 12 小时后,以及在 70 个人的遗传背景下。TOP 可以有效地探索 TF 结合图谱中定量变化。