Suppr超能文献

质子偶联与肽转运蛋白的多尺度动力学机制。

Proton coupling and the multiscale kinetic mechanism of a peptide transporter.

机构信息

Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois.

Department of Biochemistry, University of Oxford, Oxford, UK.

出版信息

Biophys J. 2022 Jun 21;121(12):2266-2278. doi: 10.1016/j.bpj.2022.05.029. Epub 2022 May 25.

Abstract

Proton-coupled peptide transporters (POTs) are crucial for the uptake of di- and tripeptides as well as drug and prodrug molecules in prokaryotes and eukaryotic cells. We illustrate from multiscale modeling how transmembrane proton flux couples within a POT protein to drive essential steps of the full functional cycle: 1) protonation of a glutamate on transmembrane helix 7 (TM7) opens the extracellular gate, allowing ligand entry; 2) inward proton flow induces the cytosolic release of ligand by varying the protonation state of a second conserved glutamate on TM10; 3) proton movement between TM7 and TM10 is thermodynamically driven and kinetically permissible via water proton shuttling without the participation of ligand. Our results, for the first time, give direct computational confirmation for the alternating access model of POTs, and point to a quantitative multiscale kinetic picture of the functioning protein mechanism.

摘要

质子偶联肽转运蛋白(POTs)对于原核生物和真核细胞中二肽和三肽以及药物和前药分子的摄取至关重要。我们通过多尺度建模来说明,在 POT 蛋白内,跨膜质子流如何偶联以驱动完整功能循环的基本步骤:1)跨膜螺旋 7(TM7)上的谷氨酸质子化打开细胞外门,允许配体进入;2)质子内流通过改变 TM10 上第二个保守谷氨酸的质子化状态诱导细胞溶质中配体的释放;3)质子在 TM7 和 TM10 之间的运动是热力学驱动的,并且通过水质子穿梭在没有配体参与的情况下在动力学上是可行的。我们的结果首次为 POT 的交替访问模型提供了直接的计算证实,并指出了功能蛋白机制的定量多尺度动力学图景。

相似文献

1
Proton coupling and the multiscale kinetic mechanism of a peptide transporter.
Biophys J. 2022 Jun 21;121(12):2266-2278. doi: 10.1016/j.bpj.2022.05.029. Epub 2022 May 25.
2
The mechanism of mammalian proton-coupled peptide transporters.
Elife. 2024 Jul 23;13:RP96507. doi: 10.7554/eLife.96507.
3
Proton movement and coupling in the POT family of peptide transporters.
Proc Natl Acad Sci U S A. 2017 Dec 12;114(50):13182-13187. doi: 10.1073/pnas.1710727114. Epub 2017 Nov 27.
5
Salt Bridge Swapping in the EXXERFXYY Motif of Proton-coupled Oligopeptide Transporters.
J Biol Chem. 2015 Dec 11;290(50):29931-40. doi: 10.1074/jbc.M115.675603. Epub 2015 Oct 19.
6
Exploring Conformational Transitions and Free-Energy Profiles of Proton-Coupled Oligopeptide Transporters.
J Chem Theory Comput. 2019 Nov 12;15(11):6433-6443. doi: 10.1021/acs.jctc.9b00524. Epub 2019 Nov 1.
7
Biophysical characterization of the proton-coupled oligopeptide transporter YjdL.
Peptides. 2012 Nov;38(1):89-93. doi: 10.1016/j.peptides.2012.08.012. Epub 2012 Aug 23.
8
Structural basis for dynamic mechanism of proton-coupled symport by the peptide transporter POT.
Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11343-8. doi: 10.1073/pnas.1301079110. Epub 2013 Jun 24.
9
Critical role of a conserved transmembrane lysine in substrate recognition by the proton-coupled oligopeptide transporter YjdL.
Int J Biochem Cell Biol. 2014 Oct;55:311-7. doi: 10.1016/j.biocel.2014.09.016. Epub 2014 Sep 26.

引用本文的文献

1
Conformational Landscape of the Di- and Tripeptide Permease A Transport Cycle.
J Chem Inf Model. 2025 Jun 23;65(12):6198-6208. doi: 10.1021/acs.jcim.5c00753. Epub 2025 Jun 9.
2
Transport mechanism of DgoT, a bacterial homolog of SLC17 organic anion transporters.
EMBO J. 2024 Dec;43(24):6740-6765. doi: 10.1038/s44318-024-00279-y. Epub 2024 Oct 25.
3
Quantitative insights into the mechanism of proton conduction and selectivity for the human voltage-gated proton channel Hv1.
Proc Natl Acad Sci U S A. 2024 Sep 17;121(38):e2407479121. doi: 10.1073/pnas.2407479121. Epub 2024 Sep 11.
4
The mechanism of mammalian proton-coupled peptide transporters.
Elife. 2024 Jul 23;13:RP96507. doi: 10.7554/eLife.96507.
6
CHARMM-GUI : Past, Current, and Future Developments and Applications.
J Chem Theory Comput. 2023 Apr 25;19(8):2161-2185. doi: 10.1021/acs.jctc.2c01246. Epub 2023 Apr 4.
7
Generalized Transition State Theory Treatment of Water-Assisted Proton Transport Processes in Proteins.
J Phys Chem B. 2022 Dec 15;126(49):10452-10459. doi: 10.1021/acs.jpcb.2c06703. Epub 2022 Dec 2.
8
Constant pH molecular dynamics simulations: Current status and recent applications.
Curr Opin Struct Biol. 2022 Dec;77:102498. doi: 10.1016/j.sbi.2022.102498. Epub 2022 Nov 18.

本文引用的文献

1
A quantitative paradigm for water-assisted proton transport through proteins and other confined spaces.
Proc Natl Acad Sci U S A. 2021 Dec 7;118(49). doi: 10.1073/pnas.2113141118.
2
Accurate and Transferable Reactive Molecular Dynamics Models from Constrained Density Functional Theory.
J Phys Chem B. 2021 Sep 23;125(37):10471-10480. doi: 10.1021/acs.jpcb.1c05992. Epub 2021 Sep 14.
6
Position-Dependent Diffusion from Biased Simulations and Markov State Model Analysis.
J Chem Theory Comput. 2021 Apr 13;17(4):2022-2033. doi: 10.1021/acs.jctc.0c01151. Epub 2021 Mar 17.
7
8
Exploring Conformational Transitions and Free-Energy Profiles of Proton-Coupled Oligopeptide Transporters.
J Chem Theory Comput. 2019 Nov 12;15(11):6433-6443. doi: 10.1021/acs.jctc.9b00524. Epub 2019 Nov 1.
9
Structural basis for prodrug recognition by the SLC15 family of proton-coupled peptide transporters.
Proc Natl Acad Sci U S A. 2019 Jan 15;116(3):804-809. doi: 10.1073/pnas.1813715116. Epub 2019 Jan 2.
10
Author Correction: VAMPnets for deep learning of molecular kinetics.
Nat Commun. 2018 Oct 22;9(1):4443. doi: 10.1038/s41467-018-06999-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验