Suppr超能文献

幻灯片图谱:用于预测乳腺癌中 HER2 状态的全幻灯片图像级图谱。

SlideGraph: Whole slide image level graphs to predict HER2 status in breast cancer.

机构信息

Tissue Image Analytics (TIA) Centre, Department of Computer Science, University of Warwick, UK.

Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, University of Nottingham, Nottingham, UK.

出版信息

Med Image Anal. 2022 Aug;80:102486. doi: 10.1016/j.media.2022.102486. Epub 2022 May 25.

Abstract

Human epidermal growth factor receptor 2 (HER2) is an important prognostic and predictive factor which is overexpressed in 15-20% of breast cancer (BCa). The determination of its status is a key clinical decision making step for selection of treatment regimen and prognostication. HER2 status is evaluated using transcriptomics or immunohistochemistry (IHC) through in-situ hybridisation (ISH) which incurs additional costs and tissue burden and is prone to analytical variabilities in terms of manual observational biases in scoring. In this study, we propose a novel graph neural network (GNN) based model (SlideGraph) to predict HER2 status directly from whole-slide images of routine Haematoxylin and Eosin (H&E) stained slides. The network was trained and tested on slides from The Cancer Genome Atlas (TCGA) in addition to two independent test datasets. We demonstrate that the proposed model outperforms the state-of-the-art methods with area under the ROC curve (AUC) values > 0.75 on TCGA and 0.80 on independent test sets. Our experiments show that the proposed approach can be utilised for case triaging as well as pre-ordering diagnostic tests in a diagnostic setting. It can also be used for other weakly supervised prediction problems in computational pathology. The SlideGraph code repository is available at https://github.com/wenqi006/SlideGraph along with an IPython notebook showing an end-to-end use case at https://github.com/TissueImageAnalytics/tiatoolbox/blob/develop/examples/full-pipelines/slide-graph.ipynb.

摘要

人类表皮生长因子受体 2(HER2)是一个重要的预后和预测因子,在 15-20%的乳腺癌(BCa)中过表达。其状态的确定是选择治疗方案和预后的关键临床决策步骤。HER2 状态通过转录组学或免疫组织化学(IHC)结合原位杂交(ISH)来评估,这会增加额外的成本和组织负担,并且在评分方面容易受到手动观察偏差的分析变异性的影响。在这项研究中,我们提出了一种新的基于图神经网络(GNN)的模型(SlideGraph),可以直接从常规苏木精和伊红(H&E)染色切片的全幻灯片图像中预测 HER2 状态。该网络在癌症基因组图谱(TCGA)的幻灯片上进行了训练和测试,此外还在两个独立的测试数据集上进行了测试。我们证明,所提出的模型在 TCGA 上的 AUC 值>0.75,在独立测试集上的 AUC 值>0.80,优于最先进的方法。我们的实验表明,该方法可用于病例分诊以及在诊断环境中预先订购诊断测试。它还可用于计算病理学中的其他弱监督预测问题。SlideGraph 代码库可在 https://github.com/wenqi006/SlideGraph 上获得,并且在 https://github.com/TissueImageAnalytics/tiatoolbox/blob/develop/examples/full-pipelines/slide-graph.ipynb 上提供了一个端到端用例的 IPython 笔记本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验