Suppr超能文献

利用电子健康记录建立多中心研究数据库的可行性:PURSUIT 网络。

Feasibility of establishing a multi-center research database using the electronic health record: The PURSUIT network.

机构信息

Pediatric Urology Research Enterprise, Department of Pediatric Urology, Children's Hospital Colorado, Aurora, CO, USA; Division of Urology, Department of Surgery, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA; Adult and Child Center for Health Outcomes Research and Delivery Science, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA.

Department of Pediatric Urology, Texas Children's Hospital, Houston, TX, USA; Department of Urology, Baylor College of Medicine, Houston, TX, USA.

出版信息

J Pediatr Urol. 2022 Dec;18(6):788.e1-788.e8. doi: 10.1016/j.jpurol.2022.05.004. Epub 2022 May 13.

Abstract

BACKGROUND

Although multi-center research is needed in pediatric urology, collaboration is impeded by differences in physician documentation and research resources. Electronic health record (EHR) tools offer a promising avenue to overcome these barriers.

OBJECTIVE

To assess the accuracy, completeness, and utilization of structured data elements across multiple practices.

STUDY DESIGN

A standardized template was developed and implemented at five academic pediatric urology practices to document clinic visits for patients with congenital hydronephrosis and/or vesicoureteral reflux. Data from standardized elements in the template and from pre-existing EHR fields were extracted into a secure database. A 20% random sample of infants with data from structured elements from 1/1/2020 and 4/30/2021 were identified and compared to manual chart review at sites with >100 charts; all other sites reviewed at least 20 charts. Manual chart review was standardized across sites and included: clinic and operative notes, orders linked to the clinic encounter, radiology results, and active medications. Accuracy of data extraction was evaluated by computing the kappa statistic and percentage agreement. For sites that had adopted the templates prior to 6/1/2019 (early adopters), a list of eligible patients with an initial clinic visit from 1/1/2020-7/27/2020 was generated using standardized reporting techniques and confirmed by manual chart review. Physician utilization of the template was then calculated by comparing patients with data obtained from the note template to the generated list of eligible patients.

RESULTS

230 patient records met study criteria. Agreement between manual chart review and data extracted from the EHR was high (>85%). Race, ethnicity and insurance data were misclassified in about 10-15% of cases; this was due to site-specific differences in how these fields were coded. Renal ultrasound was misclassified 12% of the time; this was primarily due to outside images documented in radiology results but not included in the clinical note. All other data elements had >90% agreement (Figure). Template utilization for early adopters was >75% (75.5-87.5%).

DISCUSSION

This is the first study in urology to demonstrate that use of structured data elements can support multi-center research. Limitations include: inclusion of only academic sites with the Epic EHR and lack of data on utilization and sustainability at sites without a prior history of structured template use.

CONCLUSIONS

Multi-center research collaboration using EHR-based data collection tools is feasible with generally high accuracy compared to manual chart review. Additionally, sites with a long history of template adoption have high levels of provider utilization.

摘要

背景

尽管小儿泌尿科需要进行多中心研究,但由于医生记录和研究资源的差异,合作受到阻碍。电子健康记录 (EHR) 工具提供了克服这些障碍的有前途的途径。

目的

评估多个实践中结构化数据元素的准确性、完整性和利用率。

研究设计

在五个学术小儿泌尿科实践中制定并实施了标准化模板,以记录患有先天性肾积水和/或膀胱输尿管反流的患者的就诊情况。从模板中的标准化元素和预先存在的 EHR 字段中提取的数据被提取到一个安全的数据库中。从 2020 年 1 月 1 日至 2021 年 4 月 30 日有结构化元素数据的婴儿中随机抽取 20%,并与>100 份图表的站点的手动图表审查进行比较;其他所有站点至少审查了 20 份图表。站点之间的手动图表审查是标准化的,包括:诊所和手术记录、与诊所就诊相关的医嘱、放射学结果和正在使用的药物。通过计算 Kappa 统计量和百分比一致性来评估数据提取的准确性。对于在 2019 年 6 月 1 日之前采用模板的站点(早期采用者),使用标准化报告技术生成一份 2020 年 1 月 1 日至 7 月 27 日首次就诊的合格患者清单,并通过手动图表审查进行确认。然后通过将从笔记模板中获得的数据与生成的合格患者清单进行比较,计算医生对模板的利用率。

结果

符合研究标准的患者记录有 230 条。手动图表审查与从 EHR 中提取的数据之间的一致性很高(>85%)。种族、民族和保险数据的分类错误约为 10-15%;这是由于站点在如何编码这些字段方面存在特定差异。肾脏超声的分类错误率为 12%;这主要是由于放射学结果中记录的外部图像,但未包含在临床记录中。所有其他数据元素的一致性均>90%(图)。早期采用者的模板利用率>75%(75.5-87.5%)。

讨论

这是泌尿科中第一个证明使用结构化数据元素可以支持多中心研究的研究。局限性包括:仅包括使用 Epic EHR 的学术站点,以及缺乏在没有结构化模板使用前期历史的站点上的数据关于利用率和可持续性。

结论

使用基于 EHR 的数据收集工具进行多中心研究合作是可行的,与手动图表审查相比,其准确性通常较高。此外,长期采用模板的站点具有较高的提供者利用率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验