de Faria Adriana C, Daré Joyce K, da Cunha Elaine F F, Freitas Matheus P
Departamento de Química, Instituto de Ciências Naturais, Universidade Federal de Lavras, 37200-900, Lavras, MG, Brazil.
Departamento de Química, Instituto de Ciências Naturais, Universidade Federal de Lavras, 37200-900, Lavras, MG, Brazil.
J Mol Graph Model. 2022 Nov;116:108242. doi: 10.1016/j.jmgm.2022.108242. Epub 2022 Jun 2.
Pyrimidine compounds comprise a class of acetohydroxyacid synthase (AHAS) inhibitors, thus possessing herbicidal activity. Due to the ongoing development of resistance by weeds to current herbicides, the design of new agrochemical candidates is often required. This work reports the proposition of unprecedented pyrimidines as herbicides guided by quantitative structure-activity relationship (QSAR) modeling. Multivariate image analysis (MIA) descriptors for 66 pyrimidine derivatives obtained from different sources were regressed against inhibitory activity data, and the resulting QSAR models were found to be reliable and predictive (r = 0.88 ± 0.07, q = 0.53 ± 0.06, and r = 0.51 ± 0.10 in a bootstrapping experiment using electronegativity-based descriptors). The chemical features responsible for the herbicidal activities were analyzed through MIA contour maps that describe the substituent effects on the response variables, whereas the interaction between the proposed compounds and AHAS was analyzed through docking studies. From the proposed compounds, at least five pyrimidine derivatives exhibited promising performance as AHAS inhibitors compared to the known analogs.
嘧啶化合物包含一类乙酰羟酸合酶(AHAS)抑制剂,因此具有除草活性。由于杂草对现有除草剂的抗性不断发展,常常需要设计新的农用化学品候选物。这项工作报告了在定量构效关系(QSAR)建模指导下,提出前所未有的嘧啶作为除草剂。将从不同来源获得的66种嘧啶衍生物的多变量图像分析(MIA)描述符与抑制活性数据进行回归分析,发现所得的QSAR模型是可靠且具有预测性的(在使用基于电负性的描述符的自展实验中,r = 0.88±0.07,q = 0.53±0.06,r = 0.51±0.10)。通过描述取代基对响应变量影响的MIA等高线图分析了导致除草活性的化学特征,而通过对接研究分析了所提出化合物与AHAS之间的相互作用。在所提出的化合物中,与已知类似物相比,至少有五种嘧啶衍生物作为AHAS抑制剂表现出有前景的性能。