Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla St. 12, 53-114, Wroclaw, Poland.
Department of Theoretical Biophysics, Max Planck Institute for Biophysics, 60438 Frankfurt Am Main, Germany; Faculty of Physics, University of Vienna, 1090, Vienna, Austria.
Biochem Biophys Res Commun. 2022 Aug 20;617(Pt 1):36-41. doi: 10.1016/j.bbrc.2022.05.085. Epub 2022 May 31.
N-glycosylation is a posttranslational modification that influences many protein properties, such as bioactivity, folding or solubility. The same principles apply to key enzymes in glycosylation pathways, including glycosyltransferases, that also undergoing N-glycosylation, changes in which may affect their activity. Human Gb3/CD77 synthase (encoded by A4GALT) is a Golgi-resident glycosyltransferase, which catalyzes the synthesis of Galα1→4Gal disaccharide on glycosphingolipid- and glycoprotein-derived acceptors, creating Gb3 or P1 antigens and P1 glycotopes (Galα1→4Galβ1→4GlcNAc-R), respectively. The molecules that contain Galα1→4Gal serve as receptors for pathogens and Shiga toxins, which are the major virulence factors of Shiga toxin-producing Escherichia coli (STEC). Human Gb3/CD77 synthase contains two N-glycosylation sites at positions N and N. Using the recombinant soluble glycovariants of human Gb3/CD77 synthase with mutated N-glycosylation sequons expressed in HEK293E cells, we show that the glycovariants devoid of N-glycan at position N or simultaneously at N and N sites reveal no enzymatic activity. In contrast, the N-glycan at position N plays a negligible role, whereas the presence of both N-glycans is required for efficient secretion of the enzyme. Moreover, utilizing specific glycosidases, we have found that the fully N-glycosylated enzyme contains one complex and one hybrid/oligomannose N-glycan, while single mutants contain only the complex type. Finally, in silico analysis using the AlphaFold enzyme model showed that N-glycan attached to N sequon is located in a protein motif near the active site and may allosterically influence the activity. All these findings highlight the prerequisite role of N-glycosylation in human Gb3/CD77 synthase activity (N sequon) and solubility (both N and N), with a particularly prominent role of N-glycan at position N in the regulation of enzyme activity.
N-糖基化是一种影响许多蛋白质性质的翻译后修饰,如生物活性、折叠或溶解度。糖苷酶在糖基化途径中也是如此,包括糖基转移酶,它们也经历 N-糖基化,其变化可能影响它们的活性。人 Gb3/CD77 合酶(由 A4GALT 编码)是一种驻留在高尔基体的糖基转移酶,它催化半乳糖α 1→4 半乳糖二糖在糖脂和糖蛋白衍生受体上的合成,分别产生 Gb3 或 P1 抗原和 P1 糖基表位(Galα1→4Galβ1→4GlcNAc-R)。含有 Galα1→4Gal 的分子是病原体和志贺毒素的受体,志贺毒素是产志贺毒素大肠杆菌(STEC)的主要毒力因子。人 Gb3/CD77 合酶在位置 N 和 N 含有两个 N-糖基化位点。使用在 HEK293E 细胞中表达的具有突变 N-糖基化序列的重组可溶性糖变体,我们表明,缺乏位置 N 或同时缺乏位置 N 和 N 位点的 N-聚糖的糖变体没有酶活性。相比之下,位置 N 的 N-聚糖起着微不足道的作用,而两种 N-聚糖的存在对于酶的有效分泌是必需的。此外,利用特定的糖苷酶,我们发现完全 N-糖基化的酶含有一个复杂的和一个杂合/寡甘露糖 N-聚糖,而单突变体只含有复杂的类型。最后,使用 AlphaFold 酶模型进行的计算机分析表明,与 N 序列连接的 N-聚糖位于靠近活性位点的蛋白质模体中,并且可以变构地影响活性。所有这些发现都强调了 N-糖基化在人 Gb3/CD77 合酶活性(N 序列)和溶解度(N 和 N)中的前提作用,位置 N 的 N-聚糖在调节酶活性方面具有特别突出的作用。