Suppr超能文献

用于神经接口应用的基于碳水化合物的生物材料。

Carbohydrate based biomaterials for neural interface applications.

机构信息

Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.

Center for Neural Basis of Cognition, Pittsburgh, PA, USA.

出版信息

J Mater Chem B. 2022 Jun 29;10(25):4714-4740. doi: 10.1039/d2tb00584k.

Abstract

Neuroprosthetic devices that record and modulate neural activities have demonstrated immense potential for bypassing or restoring lost neurological functions due to neural injuries and disorders. However, implantable electrical devices interfacing with brain tissue are susceptible to a series of inflammatory tissue responses along with mechanical or electrical failures which can affect the device performance over time. Several biomaterial strategies have been implemented to improve device-tissue integration for high quality and stable performance. Ranging from developing smaller, softer, and more flexible electrode designs to introducing bioactive coatings and drug-eluting layers on the electrode surface, such strategies have shown different degrees of success but with limitations. With their hydrophilic properties and specific bioactivities, carbohydrates offer a potential solution for addressing some of the limitations of the existing biomolecular approaches. In this review, we summarize the role of polysaccharides in the central nervous system, with a primary focus on glycoproteins and proteoglycans, to shed light on their untapped potential as biomaterials for neural implants. Utilization of glycosaminoglycans for neural interface and tissue regeneration applications is comprehensively reviewed to provide the current state of carbohydrate-based biomaterials for neural implants. Finally, we will discuss the challenges and opportunities of applying carbohydrate-based biomaterials for neural tissue interfaces.

摘要

神经假体设备可记录和调节神经活动,由于神经损伤和疾病导致的神经功能丧失,它们具有巨大的恢复和替代潜力。然而,与脑组织接口的植入式电子设备容易受到一系列炎症组织反应的影响,以及机械或电气故障的影响,随着时间的推移,这些反应会影响设备性能。已经实施了几种生物材料策略来改善设备与组织的整合,以实现高质量和稳定的性能。从开发更小、更柔软、更灵活的电极设计到在电极表面引入生物活性涂层和药物洗脱层,这些策略都取得了不同程度的成功,但也存在局限性。碳水化合物具有亲水性和特定的生物活性,为解决现有生物分子方法的一些局限性提供了潜在的解决方案。在这篇综述中,我们总结了多糖在中枢神经系统中的作用,主要关注糖蛋白和蛋白聚糖,以揭示它们作为神经植入物生物材料的未开发潜力。我们全面回顾了糖胺聚糖在神经界面和组织再生应用中的作用,以提供用于神经植入物的基于碳水化合物的生物材料的现状。最后,我们将讨论应用基于碳水化合物的生物材料用于神经组织界面的挑战和机遇。

相似文献

1
Carbohydrate based biomaterials for neural interface applications.
J Mater Chem B. 2022 Jun 29;10(25):4714-4740. doi: 10.1039/d2tb00584k.
2
Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording.
Med Biol Eng Comput. 2016 Jan;54(1):23-44. doi: 10.1007/s11517-015-1430-4. Epub 2016 Jan 11.
3
Improving the Biocompatibility and Functionality of Neural Interface Devices with Silica Nanoparticles.
Acc Chem Res. 2024 Jun 18;57(12):1684-1695. doi: 10.1021/acs.accounts.4c00160. Epub 2024 May 30.
4
Ultrasoft microwire neural electrodes improve chronic tissue integration.
Acta Biomater. 2017 Apr 15;53:46-58. doi: 10.1016/j.actbio.2017.02.010. Epub 2017 Feb 6.
5
Regenerative Electrode Interfaces for Neural Prostheses.
Tissue Eng Part B Rev. 2016 Apr;22(2):125-35. doi: 10.1089/ten.TEB.2015.0279. Epub 2015 Nov 23.
6
Conducting Polymers for Neural Prosthetic and Neural Interface Applications.
Adv Mater. 2015 Dec 9;27(46):7620-37. doi: 10.1002/adma.201501810. Epub 2015 Sep 28.
7
Immunomodulatory Biomaterials for Tissue Repair.
Chem Rev. 2021 Sep 22;121(18):11305-11335. doi: 10.1021/acs.chemrev.0c00895. Epub 2021 Aug 20.
8
Monolithically Defined Wireless Fully Implantable Nervous System Interfaces.
Acc Chem Res. 2024 May 7;57(9):1275-1286. doi: 10.1021/acs.accounts.4c00013. Epub 2024 Apr 12.
9
Optimizing the neuron-electrode interface for chronic bioelectronic interfacing.
Neurosurg Focus. 2020 Jul;49(1):E7. doi: 10.3171/2020.4.FOCUS20178.
10
Interfacing Neuron-Motor Pathways with Stretchable and Biocompatible Electrode Arrays.
Acc Chem Res. 2024 Aug 20;57(16):2255-2266. doi: 10.1021/acs.accounts.4c00215. Epub 2024 Jul 18.

引用本文的文献

1
Polysaccharide-based hydrogels for cartilage regeneration.
Front Cell Dev Biol. 2024 Oct 11;12:1444358. doi: 10.3389/fcell.2024.1444358. eCollection 2024.
2
Investigation of a chondroitin sulfate-based bioactive coating for neural interface applications.
J Mater Chem B. 2024 Jun 5;12(22):5535-5550. doi: 10.1039/d4tb00501e.
3
Advances in electrode interface materials and modification technologies for brain-computer interfaces.
Biomater Transl. 2023 Dec 28;4(4):213-233. doi: 10.12336/biomatertransl.2023.04.003. eCollection 2023.
5
Streamlining the interface between electronics and neural systems for bidirectional electrochemical communication.
Chem Sci. 2023 Apr 14;14(17):4463-4479. doi: 10.1039/d3sc00338h. eCollection 2023 May 3.
6
Flexible IrO neural electrode for mouse vagus nerve stimulation.
Acta Biomater. 2023 Mar 15;159:394-409. doi: 10.1016/j.actbio.2023.01.026. Epub 2023 Jan 17.

本文引用的文献

1
Tissue-Engineered Peripheral Nerve Interfaces.
Adv Funct Mater. 2018 Mar 21;28(12). doi: 10.1002/adfm.201701713. Epub 2017 Aug 18.
3
Explant Analysis of Utah Electrode Arrays Implanted in Human Cortex for Brain-Computer-Interfaces.
Front Bioeng Biotechnol. 2021 Dec 7;9:759711. doi: 10.3389/fbioe.2021.759711. eCollection 2021.
4
Bio-integrative design of the neural tissue-device interface.
Curr Opin Biotechnol. 2021 Dec;72:54-61. doi: 10.1016/j.copbio.2021.10.003. Epub 2021 Oct 26.
8
Electrode Materials for Chronic Electrical Microstimulation.
Adv Healthc Mater. 2021 Jun;10(12):e2100119. doi: 10.1002/adhm.202100119. Epub 2021 May 24.
10
Printable alginate/gelatin hydrogel reinforced with carbon nanofibers as electrically conductive scaffolds for tissue engineering.
Mater Sci Eng C Mater Biol Appl. 2021 Mar;122:111927. doi: 10.1016/j.msec.2021.111927. Epub 2021 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验