Suppr超能文献

瘫痪上肢复杂运动的恢复。

Restoration of complex movement in the paralyzed upper limb.

机构信息

Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, United States of America.

Graduate Program in Neuroscience, University of Arizona, Tucson, AZ, United States of America.

出版信息

J Neural Eng. 2022 Jul 1;19(4). doi: 10.1088/1741-2552/ac7ad7.

Abstract

Functional electrical stimulation (FES) involves artificial activation of skeletal muscles to reinstate motor function in paralyzed individuals. While FES applied to the upper limb has improved the ability of tetraplegics to perform activities of daily living, there are key shortcomings impeding its widespread use. One major limitation is that the range of motor behaviors that can be generated is restricted to a small set of simple, preprogrammed movements. This limitation stems from the substantial difficulty in determining the patterns of stimulation across many muscles required to produce more complex movements. Therefore, the objective of this study was to use machine learning to flexibly identify patterns of muscle stimulation needed to evoke a wide array of multi-joint arm movements.. Arm kinematics and electromyographic (EMG) activity from 29 muscles were recorded while a 'trainer' monkey made an extensive range of arm movements. Those data were used to train an artificial neural network that predicted patterns of muscle activity associated with a new set of movements. Those patterns were converted into trains of stimulus pulses that were delivered to upper limb muscles in two other temporarily paralyzed monkeys.. Machine-learning based prediction of EMG was good for within-subject predictions but appreciably poorer for across-subject predictions. Evoked responses matched the desired movements with good fidelity only in some cases. Means to mitigate errors associated with FES-evoked movements are discussed.. Because the range of movements that can be produced with our approach is virtually unlimited, this system could greatly expand the repertoire of movements available to individuals with high level paralysis.

摘要

功能性电刺激(FES)涉及人工激活骨骼肌,以恢复瘫痪个体的运动功能。虽然应用于上肢的 FES 已经提高了四肢瘫痪者进行日常生活活动的能力,但仍存在一些关键的缺点阻碍了其广泛应用。一个主要的限制是,能够产生的运动行为范围仅限于一小部分简单的、预先编程的运动。这种限制源于确定产生更复杂运动所需的大量肌肉刺激模式的巨大困难。因此,本研究的目的是使用机器学习灵活地识别出引起广泛的多关节手臂运动所需的肌肉刺激模式。在“训练者”猴子进行广泛的手臂运动时,记录了手臂运动学和肌电图(EMG)活动。这些数据被用于训练一个人工神经网络,该网络可以预测与新的运动集相关的肌肉活动模式。这些模式被转换为刺激脉冲序列,这些脉冲序列被传送到另外两只暂时瘫痪的猴子的上肢肌肉。基于机器学习的 EMG 预测在个体内预测方面效果很好,但在个体间预测方面效果明显较差。在某些情况下,诱发的反应可以很好地匹配期望的运动,但在其他情况下则不行。讨论了减轻与 FES 诱发运动相关的错误的方法。由于我们的方法可以产生的运动范围几乎是无限的,因此该系统可以极大地扩展高位瘫痪个体可用的运动范围。

相似文献

1
Restoration of complex movement in the paralyzed upper limb.
J Neural Eng. 2022 Jul 1;19(4). doi: 10.1088/1741-2552/ac7ad7.
2
Probability-based prediction of activity in multiple arm muscles: implications for functional electrical stimulation.
J Neurophysiol. 2008 Jul;100(1):482-94. doi: 10.1152/jn.00956.2007. Epub 2008 Apr 24.
3
Prediction of muscle activity during loaded movements of the upper limb.
J Neuroeng Rehabil. 2015 Jan 15;12(1):6. doi: 10.1186/1743-0003-12-6.
4
5
Prediction of leg muscle activities from arm muscle activities in arm and leg cycling.
Anat Rec (Hoboken). 2023 Apr;306(4):710-719. doi: 10.1002/ar.25004. Epub 2022 Jun 17.
6
Evaluation of probabilistic methods to predict muscle activity: implications for neuroprosthetics.
J Neural Eng. 2009 Oct;6(5):055008. doi: 10.1088/1741-2560/6/5/055008. Epub 2009 Sep 1.
7
Feasibility of EMG-based neural network controller for an upper extremity neuroprosthesis.
IEEE Trans Neural Syst Rehabil Eng. 2009 Feb;17(1):80-90. doi: 10.1109/TNSRE.2008.2010480.
9
Forelimb movements and muscle responses evoked by microstimulation of cervical spinal cord in sedated monkeys.
J Neurophysiol. 2007 Jan;97(1):110-20. doi: 10.1152/jn.00414.2006. Epub 2006 Sep 13.
10
Large-scale intramuscular electrode system for chronic electromyography and functional electrical stimulation.
J Neurophysiol. 2022 Oct 1;128(4):1011-1024. doi: 10.1152/jn.00325.2022. Epub 2022 Sep 21.

引用本文的文献

3
Transforming medicine: artificial intelligence integration in the peripheral nervous system.
Front Neurol. 2024 Feb 14;15:1332048. doi: 10.3389/fneur.2024.1332048. eCollection 2024.
5
Data-Driven Dynamic Motion Planning for Practical FES-Controlled Reaching Motions in Spinal Cord Injury.
IEEE Trans Neural Syst Rehabil Eng. 2023;31:2246-2256. doi: 10.1109/TNSRE.2023.3272929. Epub 2023 May 11.
6
Large-scale intramuscular electrode system for chronic electromyography and functional electrical stimulation.
J Neurophysiol. 2022 Oct 1;128(4):1011-1024. doi: 10.1152/jn.00325.2022. Epub 2022 Sep 21.

本文引用的文献

1
Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis.
Nat Med. 2022 Feb;28(2):260-271. doi: 10.1038/s41591-021-01663-5. Epub 2022 Feb 7.
2
Implantable brain-computer interface for neuroprosthetic-enabled volitional hand grasp restoration in spinal cord injury.
Brain Commun. 2021 Oct 21;3(4):fcab248. doi: 10.1093/braincomms/fcab248. eCollection 2021.
3
Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury.
Science. 2021 Nov 12;374(6569):848-856. doi: 10.1126/science.abh3602. Epub 2021 Nov 11.
8
Transcutaneous Spinal Cord Stimulation Restores Hand and Arm Function After Spinal Cord Injury.
IEEE Trans Neural Syst Rehabil Eng. 2021;29:310-319. doi: 10.1109/TNSRE.2021.3049133. Epub 2021 Mar 2.
10
Electrical Stimulation as a Tool to Promote Plasticity of the Injured Spinal Cord.
J Neurotrauma. 2020 Sep 15;37(18):1933-1953. doi: 10.1089/neu.2020.7033. Epub 2020 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验