Suppr超能文献

基于多源信息的图注意网络预测 miRNA-疾病关联。

Predicting miRNA-disease associations based on graph attention network with multi-source information.

机构信息

School of Information Engineering, East China Jiaotong University, Nanchang, China.

School of Information Science and Engineering, Shandong Normal University, Jinan, China.

出版信息

BMC Bioinformatics. 2022 Jun 21;23(1):244. doi: 10.1186/s12859-022-04796-7.

Abstract

BACKGROUND

There is a growing body of evidence from biological experiments suggesting that microRNAs (miRNAs) play a significant regulatory role in both diverse cellular activities and pathological processes. Exploring miRNA-disease associations not only can decipher pathogenic mechanisms but also provide treatment solutions for diseases. As it is inefficient to identify undiscovered relationships between diseases and miRNAs using biotechnology, an explosion of computational methods have been advanced. However, the prediction accuracy of existing models is hampered by the sparsity of known association network and single-category feature, which is hard to model the complicated relationships between diseases and miRNAs.

RESULTS

In this study, we advance a new computational framework (GATMDA) to discover unknown miRNA-disease associations based on graph attention network with multi-source information, which effectively fuses linear and non-linear features. In our method, the linear features of diseases and miRNAs are constructed by disease-lncRNA correlation profiles and miRNA-lncRNA correlation profiles, respectively. Then, the graph attention network is employed to extract the non-linear features of diseases and miRNAs by aggregating information of each neighbor with different weights. Finally, the random forest algorithm is applied to infer the disease-miRNA correlation pairs through fusing linear and non-linear features of diseases and miRNAs. As a result, GATMDA achieves impressive performance: an average AUC of 0.9566 with five-fold cross validation, which is superior to other previous models. In addition, case studies conducted on breast cancer, colon cancer and lymphoma indicate that 50, 50 and 48 out of the top fifty prioritized candidates are verified by biological experiments.

CONCLUSIONS

The extensive experimental results justify the accuracy and utility of GATMDA and we could anticipate that it may regard as a utility tool for identifying unobserved disease-miRNA relationships.

摘要

背景

越来越多的生物学实验证据表明,微小 RNA(miRNAs)在多种细胞活动和病理过程中发挥着重要的调节作用。探索 miRNA 与疾病的关联不仅可以破译发病机制,还为疾病提供治疗方案。由于使用生物技术来识别疾病和 miRNA 之间未发现的关系效率低下,因此已经提出了大量计算方法。然而,现有模型的预测准确性受到已知关联网络和单类别特征稀疏性的限制,难以对疾病和 miRNA 之间复杂的关系进行建模。

结果

在这项研究中,我们基于具有多源信息的图注意网络提出了一种新的计算框架(GATMDA),用于发现未知的 miRNA 与疾病的关联,该框架有效地融合了线性和非线性特征。在我们的方法中,疾病和 miRNA 的线性特征分别由疾病-lncRNA 相关谱和 miRNA-lncRNA 相关谱构建。然后,图注意网络通过使用不同权重聚合每个邻居的信息来提取疾病和 miRNA 的非线性特征。最后,通过融合疾病和 miRNA 的线性和非线性特征,随机森林算法用于推断疾病-miRNA 相关对。结果表明,GATMDA 实现了令人印象深刻的性能:在五重交叉验证中平均 AUC 为 0.9566,优于其他先前的模型。此外,在乳腺癌、结肠癌和淋巴瘤上进行的案例研究表明,在排名前 50 的优先候选者中,有 50、50 和 48 个被生物实验验证。

结论

广泛的实验结果证明了 GATMDA 的准确性和实用性,我们可以预期它可能成为识别未观察到的疾病-miRNA 关系的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bef/9215044/9cecf3a1cfe1/12859_2022_4796_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验