Suppr超能文献

深度糖尿病视网膜病变检测:糖尿病视网膜病变分级与图像质量评估挑战赛

DeepDRiD: Diabetic Retinopathy-Grading and Image Quality Estimation Challenge.

作者信息

Liu Ruhan, Wang Xiangning, Wu Qiang, Dai Ling, Fang Xi, Yan Tao, Son Jaemin, Tang Shiqi, Li Jiang, Gao Zijian, Galdran Adrian, Poorneshwaran J M, Liu Hao, Wang Jie, Chen Yerui, Porwal Prasanna, Wei Tan Gavin Siew, Yang Xiaokang, Dai Chao, Song Haitao, Chen Mingang, Li Huating, Jia Weiping, Shen Dinggang, Sheng Bin, Zhang Ping

机构信息

Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.

MoE Key Lab of Artificial Intelligence, Artificial Intelligence Institute, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Patterns (N Y). 2022 May 20;3(6):100512. doi: 10.1016/j.patter.2022.100512. eCollection 2022 Jun 10.

Abstract

We described a challenge named "Diabetic Retinopathy (DR)-Grading and Image Quality Estimation Challenge" in conjunction with ISBI 2020 to hold three sub-challenges and develop deep learning models for DR image assessment and grading. The scientific community responded positively to the challenge, with 34 submissions from 574 registrations. In the challenge, we provided the DeepDRiD dataset containing 2,000 regular DR images (500 patients) and 256 ultra-widefield images (128 patients), both having DR quality and grading annotations. We discussed details of the top 3 algorithms in each sub-challenges. The weighted kappa for DR grading ranged from 0.93 to 0.82, and the accuracy for image quality evaluation ranged from 0.70 to 0.65. The results showed that image quality assessment can be used as a further target for exploration. We also have released the DeepDRiD dataset on GitHub to help develop automatic systems and improve human judgment in DR screening and diagnosis.

摘要

我们联合国际生物医学影像学会(ISBI)2020会议提出了一项名为“糖尿病视网膜病变(DR)分级与图像质量评估挑战赛”的挑战,该挑战包含三个子挑战,并开发用于DR图像评估和分级的深度学习模型。科学界对该挑战反应积极,574名注册者提交了34份作品。在挑战赛中,我们提供了包含2000张常规DR图像(500名患者)和256张超广角图像(128名患者)的DeepDRiD数据集,这些图像均带有DR质量和分级标注。我们讨论了每个子挑战中排名前三的算法细节。DR分级的加权kappa值在0.93至0.82之间,图像质量评估的准确率在0.70至0.65之间。结果表明,图像质量评估可作为进一步探索的目标。我们还在GitHub上发布了DeepDRiD数据集,以帮助开发自动系统并改善DR筛查和诊断中的人工判断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验