Univ. Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, France.
INSERM, Paris, France.
Methods Mol Biol. 2022;2497:221-242. doi: 10.1007/978-1-0716-2309-1_14.
Numerous diseases in humans have been associated with mutations of the mitochondrial genome (mtDNA). This genome encodes 13 protein subunits of complexes involved in oxidative phosphorylation (OXPHOS), a process that provides aerobic eukaryotes with the energy-rich adenosine triphosphate molecule (ATP). Mutations of the mtDNA may therefore have dramatic consequences especially in tissues and organs with high energy demand. Evaluating the pathogenicity of these mutations may be difficult because they often affect only a fraction of the numerous copies of the mitochondrial genome (up to several thousands in a single cell), which is referred to as heteroplasmy. Furthermore, due to its exposure to reactive oxygen species (ROS) produced in mitochondria, the mtDNA is prone to mutations, and some may be simply neutral polymorphisms with no detrimental consequences on human health. Another difficulty is the absence of methods for genetically transforming human mitochondria. Face to these complexities, the yeast Saccharomyces cerevisiae provides a convenient model for investigating the consequences of human mtDNA mutations in a defined genetic background. Owing to its good fermentation capacity, it can survive the loss of OXPHOS, its mitochondrial genome can be manipulated, and genetic heterogeneity in its mitochondria is unstable. Taking advantage of these unique attributes, we herein describe a method we have developed for creating yeast models of mitochondrial ATP6 gene mutations detected in patients, to determine how they impact OXPHOS. Additionally, we describe how these models can be used to discover molecules with therapeutic potential.
许多人类疾病都与线粒体基因组 (mtDNA) 的突变有关。该基因组编码参与氧化磷酸化 (OXPHOS) 的 13 个蛋白亚基复合物,这是一个为有氧真核生物提供富含能量的三磷酸腺苷 (ATP) 分子的过程。因此,mtDNA 的突变可能会产生巨大的影响,尤其是在高能量需求的组织和器官中。评估这些突变的致病性可能很困难,因为它们通常只影响线粒体基因组的许多拷贝中的一小部分(在单个细胞中多达数千个),这被称为异质性。此外,由于其暴露于线粒体中产生的活性氧 (ROS),mtDNA 容易发生突变,有些可能只是简单的中性多态性,对人类健康没有不利影响。另一个困难是缺乏遗传转化人类线粒体的方法。面对这些复杂性,酵母酿酒酵母为在特定遗传背景下研究人类 mtDNA 突变的后果提供了一个方便的模型。由于其良好的发酵能力,它可以在失去 OXPHOS 的情况下存活,其线粒体基因组可以被操纵,并且其线粒体中的遗传异质性不稳定。利用这些独特的属性,我们在此描述了一种我们开发的用于创建酵母模型的方法,以研究患者中检测到的线粒体 ATP6 基因突变如何影响 OXPHOS。此外,我们还描述了如何利用这些模型来发现具有治疗潜力的分子。