Suppr超能文献

MAP3KsDLK 和 LZK 直接调控斑马鱼外周神经元对轴突损伤的不同反应。

The MAP3Ks DLK and LZK Direct Diverse Responses to Axon Damage in Zebrafish Peripheral Neurons.

机构信息

Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095.

Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802.

出版信息

J Neurosci. 2022 Aug 10;42(32):6195-6210. doi: 10.1523/JNEUROSCI.1395-21.2022. Epub 2022 Jul 15.

Abstract

Mitogen-activated protein kinase kinase kinases (MAP3Ks) dual leucine kinase (DLK) and leucine zipper kinase (LZK) are essential mediators of axon damage responses, but their responses are varied, complex, and incompletely understood. To characterize their functions in axon injury, we generated zebrafish mutants of each gene, labeled motor neurons (MNs) and touch-sensing neurons in live zebrafish, precisely cut their axons with a laser, and assessed the ability of mutant axons to regenerate in larvae, before sex is apparent in zebrafish. DLK and LZK were required redundantly and cell autonomously for axon regeneration in MNs but not in larval Rohon-Beard (RB) or adult dorsal root ganglion (DRG) sensory neurons. Surprisingly, in double mutants, the spared branches of wounded RB axons grew excessively, suggesting that these kinases inhibit regenerative sprouting in damaged axons. Uninjured trigeminal sensory axons also grew excessively in mutants when neighboring neurons were ablated, indicating that these MAP3Ks are general inhibitors of sensory axon growth. These results demonstrate that zebrafish DLK and LZK promote diverse injury responses, depending on the neuronal cell identity and type of axonal injury. The MAP3Ks DLK and LZK are damage sensors that promote diverse outcomes to neuronal injury, including axon regeneration. Understanding their context-specific functions is a prerequisite to considering these kinases as therapeutic targets. To investigate DLK and LZK cell-type-specific functions, we created zebrafish mutants in each gene. Using mosaic cell labeling and precise laser injury we found that both proteins were required for axon regeneration in motor neurons but, unexpectedly, were not required for axon regeneration in Rohon-Beard or DRG sensory neurons and negatively regulated sprouting in the spared axons of touch-sensing neurons. These findings emphasize that animals have evolved distinct mechanisms to regulate injury site regeneration and collateral sprouting, and identify differential roles for DLK and LZK in these processes.

摘要

丝裂原活化蛋白激酶激酶激酶 (MAP3Ks) 双亮氨酸激酶 (DLK) 和亮氨酸拉链激酶 (LZK) 是轴突损伤反应的重要介质,但它们的反应是多样的、复杂的,并且尚未完全理解。为了表征它们在轴突损伤中的功能,我们在斑马鱼中生成了每个基因的突变体,标记了活体斑马鱼中的运动神经元 (MNs) 和触觉神经元,用激光精确切割它们的轴突,并评估了突变体轴突在幼虫中的再生能力,在斑马鱼中出现性别之前。DLK 和 LZK 对于 MNs 的轴突再生是必需的,并且是冗余的和细胞自主的,但对于幼虫 Rohon-Beard (RB) 或成年背根神经节 (DRG) 感觉神经元的轴突再生不是必需的。令人惊讶的是,在双突变体中,受伤的 RB 轴突的保留分支过度生长,表明这些激酶抑制受损轴突中的再生发芽。当相邻神经元被消融时,未受伤的三叉神经感觉轴突也在突变体中过度生长,表明这些 MAP3Ks 是感觉轴突生长的一般抑制剂。这些结果表明,斑马鱼 DLK 和 LZK 促进了不同的损伤反应,这取决于神经元细胞身份和轴突损伤类型。MAP3Ks DLK 和 LZK 是损伤传感器,可促进神经元损伤的多种结果,包括轴突再生。了解它们的特定于上下文的功能是将这些激酶作为治疗靶点的前提。为了研究 DLK 和 LZK 的细胞类型特异性功能,我们在每个基因中创建了斑马鱼突变体。使用镶嵌细胞标记和精确的激光损伤,我们发现这两种蛋白质都需要运动神经元中的轴突再生,但出乎意料的是,它们不需要 Rohon-Beard 或 DRG 感觉神经元中的轴突再生,并且负调节触觉神经元中保留轴突的发芽。这些发现强调,动物已经进化出不同的机制来调节损伤部位的再生和侧支发芽,并确定了 DLK 和 LZK 在这些过程中的不同作用。

相似文献

1
The MAP3Ks DLK and LZK Direct Diverse Responses to Axon Damage in Zebrafish Peripheral Neurons.
J Neurosci. 2022 Aug 10;42(32):6195-6210. doi: 10.1523/JNEUROSCI.1395-21.2022. Epub 2022 Jul 15.
2
A Critical Role for DLK and LZK in Axonal Repair in the Mammalian Spinal Cord.
J Neurosci. 2022 May 4;42(18):3716-3732. doi: 10.1523/JNEUROSCI.2495-21.2022. Epub 2022 Mar 31.
6
DLK: the "preconditioning" signal for axon regeneration?
Neuron. 2012 Jun 21;74(6):961-3. doi: 10.1016/j.neuron.2012.06.005.
7
Multitasking: Dual Leucine Zipper-Bearing Kinases in Neuronal Development and Stress Management.
Annu Rev Cell Dev Biol. 2019 Oct 6;35:501-521. doi: 10.1146/annurev-cellbio-100617-062644.
8
Dual leucine zipper kinase is required for retrograde injury signaling and axonal regeneration.
Neuron. 2012 Jun 21;74(6):1015-22. doi: 10.1016/j.neuron.2012.04.028.
9
Fragile axons forge the path to gene discovery: a MAP kinase pathway regulates axon regeneration.
Sci Signal. 2009 May 5;2(69):pe30. doi: 10.1126/scisignal.269pe30.

引用本文的文献

1
ATF2 phosphorylation is a core transcriptional driver of neuron apoptosis.
bioRxiv. 2025 May 8:2023.09.27.559856. doi: 10.1101/2023.09.27.559856.
2
Voltage-gated calcium channels act upstream of adenylyl cyclase Ac78C to promote timely initiation of dendrite regeneration.
PLoS Genet. 2024 Aug 26;20(8):e1011388. doi: 10.1371/journal.pgen.1011388. eCollection 2024 Aug.
3
Single-Cell Analysis of Rohon-Beard Neurons Implicates Fgf Signaling in Axon Maintenance and Cell Survival.
J Neurosci. 2024 Apr 17;44(16):e1600232024. doi: 10.1523/JNEUROSCI.1600-23.2024.
4
DLK signaling in axotomized neurons triggers complement activation and loss of upstream synapses.
Cell Rep. 2024 Feb 27;43(2):113801. doi: 10.1016/j.celrep.2024.113801. Epub 2024 Feb 14.
5
Ciliated sensory neurons can regenerate axons after complete axon removal.
J Exp Biol. 2023 Jun 15;226(12). doi: 10.1242/jeb.245717. Epub 2023 Jun 21.
7
Dendrite regeneration in the vertebrate spinal cord.
Dev Biol. 2022 Aug;488:114-119. doi: 10.1016/j.ydbio.2022.05.014. Epub 2022 May 27.

本文引用的文献

1
A Critical Role for DLK and LZK in Axonal Repair in the Mammalian Spinal Cord.
J Neurosci. 2022 May 4;42(18):3716-3732. doi: 10.1523/JNEUROSCI.2495-21.2022. Epub 2022 Mar 31.
2
Microtubule organization of vertebrate sensory neurons in vivo.
Dev Biol. 2021 Oct;478:1-12. doi: 10.1016/j.ydbio.2021.06.007. Epub 2021 Jun 18.
4
Morphological and physiological properties of Rohon-Beard neurons along the zebrafish spinal cord.
J Comp Neurol. 2021 May 1;529(7):1499-1515. doi: 10.1002/cne.25033. Epub 2020 Sep 25.
7
The receptor tyrosine kinase Ror is required for dendrite regeneration in Drosophila neurons.
PLoS Biol. 2020 Mar 12;18(3):e3000657. doi: 10.1371/journal.pbio.3000657. eCollection 2020 Mar.
9
Multitasking: Dual Leucine Zipper-Bearing Kinases in Neuronal Development and Stress Management.
Annu Rev Cell Dev Biol. 2019 Oct 6;35:501-521. doi: 10.1146/annurev-cellbio-100617-062644.
10
Genetic compensation triggered by mutant mRNA degradation.
Nature. 2019 Apr;568(7751):193-197. doi: 10.1038/s41586-019-1064-z. Epub 2019 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验