Department of Microbiology and Immunology, University of Minnesotagrid.17635.36, Minneapolis, Minnesota, USA.
Department of Medicine, University of Minnesotagrid.17635.36, Minneapolis, Minnesota, USA.
J Virol. 2022 Aug 10;96(15):e0088522. doi: 10.1128/jvi.00885-22. Epub 2022 Jul 20.
Anti-retroviral therapy (ART) generally suppresses HIV replication to undetectable levels in peripheral blood, but immune activation associated with increased morbidity and mortality is sustained during ART, and infection rebounds when treatment is interrupted. To identify drivers of immune activation and potential sources of viral rebound, we modified RNAscope in situ hybridization to visualize HIV-producing cells as a standard against which to compare the following assays of potential sources of immune activation and virus rebound following treatment interruption: (i) envelope detection by induced transcription-based sequencing (EDITS) assay; (ii) HIV-Flow; (iii) Flow-FISH assays that can scan tissues and cell suspensions to detect rare cells expressing env mRNA, gag mRNA/Gag protein and p24; and (iv) an ultrasensitive immunoassay that detects p24 in cell/tissue lysates at subfemtomolar levels. We show that the sensitivities of these assays are sufficient to detect one rare HIV-producing/env mRNA/p24 cell in one million uninfected cells. These high-throughput technologies provide contemporary tools to detect and characterize rare cells producing virus and viral antigens as potential sources of immune activation and viral rebound. Anti-retroviral therapy (ART) has greatly improved the quality and length of life for people living with HIV, but immune activation does not normalize during ART, and persistent immune activation has been linked to increased morbidity and mortality. We report a comparison of assays of two potential sources of immune activation during ART: rare cells producing HIV and the virus' major viral protein, p24, benchmarked on a cell model of active and latent infections and a method to visualize HIV-producing cells. We show that assays of HIV envelope mRNA (EDITS assay), gag mRNA, and p24 (Flow-FISH, HIV-Flow. and ultrasensitive p24 immunoassay) detect HIV-producing cells and p24 at sensitivities of one infected cell in a million uninfected cells, thereby providing validated tools to explore sources of immune activation during ART in the lymphoid and other tissue reservoirs.
抗逆转录病毒疗法(ART)通常可将外周血中的 HIV 复制抑制到无法检测的水平,但在 ART 期间与发病率和死亡率增加相关的免疫激活持续存在,并且在治疗中断时感染会反弹。为了确定免疫激活的驱动因素和病毒反弹的潜在来源,我们修改了 RNAscope 原位杂交技术,将产生 HIV 的细胞可视化,作为比较以下潜在来源的免疫激活和治疗中断后病毒反弹的检测方法的标准:(i)基于诱导转录的测序(EDITS)检测法检测包膜;(ii)HIV-Flow;(iii)可以扫描组织和细胞悬浮液以检测表达 env mRNA、gag mRNA/Gag 蛋白和 p24 的罕见细胞的 Flow-FISH 检测法;(iv)一种超灵敏免疫测定法,可在细胞/组织裂解物中检测亚皮摩尔水平的 p24。我们表明,这些检测法的灵敏度足以检测到一百万个未感染细胞中一个罕见的产生 HIV 的/env mRNA/p24 细胞。这些高通量技术提供了当代工具,可用于检测和表征产生病毒和病毒抗原的罕见细胞,这些细胞可能是免疫激活和病毒反弹的潜在来源。抗逆转录病毒疗法(ART)极大地提高了 HIV 感染者的生活质量和寿命,但在 ART 期间免疫激活并未正常化,并且持续的免疫激活与发病率和死亡率增加有关。我们报告了在 ART 期间两种潜在免疫激活来源的检测方法的比较:产生 HIV 的罕见细胞和病毒的主要病毒蛋白 p24,该比较基于活跃和潜伏感染的细胞模型以及可视化产生 HIV 的细胞的方法。我们表明,HIV 包膜 mRNA(EDITS 检测法)、gag mRNA 和 p24(Flow-FISH、HIV-Flow 和超灵敏 p24 免疫测定法)的检测法可检测到 HIV 产生细胞和 p24,灵敏度为百万个未感染细胞中一个感染细胞,从而提供了经过验证的工具,可在淋巴组织和其他组织储库中探索 ART 期间免疫激活的来源。