Suppr超能文献

基因组和表观基因组景观驱动基于 CRISPR 的基因组编辑。

Genomic and epigenetic landscapes drive CRISPR-based genome editing in .

机构信息

Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695.

IFF Health & Biosciences, International Flavors and Fragrances, Inc., Madison, WI 53716.

出版信息

Proc Natl Acad Sci U S A. 2022 Jul 26;119(30):e2205068119. doi: 10.1073/pnas.2205068119. Epub 2022 Jul 20.

Abstract

is a commensal bacterial genus ubiquitous in the human gastrointestinal tract, which is associated with a range of health benefits. The advent of CRISPR-based genome editing technologies provides opportunities to investigate the genetics of important bacteria and transcend the lack of genetic tools in bifidobacteria to study the basis for their health-promoting attributes. Here, we repurpose the endogenous type I-G CRISPR-Cas system and adopt an exogenous CRISPR base editor for genome engineering in subsp. demonstrating that both genomic and epigenetic contexts drive editing outcomes across strains. We reprogrammed the endogenous type I-G system to screen for naturally occurring large deletions up to 27 kb and to generate a 500-bp deletion in to abolish tetracycline resistance. A CRISPR-cytosine base editor was optimized to install C•G-to-T•A amber mutations to resensitize multiple strains to tetracycline. Remarkably, we uncovered epigenetic patterns that are distributed unevenly among strains, despite their genomic homogeneity, that may contribute to editing efficiency variability. Insights were also expanded to subsp. to emphasize the broad relevance of these findings. This study highlights the need to develop individualized CRISPR-based genome engineering approaches for distinct bacterial strains and opens avenues for engineering of next generation probiotics.

摘要

是一种普遍存在于人类胃肠道内的共生细菌属,与一系列健康益处相关。基于 CRISPR 的基因组编辑技术的出现为研究重要细菌的遗传学提供了机会,并克服了双歧杆菌缺乏遗传工具的问题,从而研究其促进健康的特性的基础。在这里,我们重新利用内源性 I-G 型 CRISPR-Cas 系统,并采用外源性 CRISPR 碱基编辑器对 subsp. 进行基因组工程改造,证明了基因组和表观遗传背景共同驱动了不同菌株的编辑结果。我们对内源性 I-G 系统进行了重新编程,以筛选长达 27kb 的天然大缺失,并在 中产生 500bp 的缺失以消除四环素抗性。优化了 CRISPR-胞嘧啶碱基编辑器以安装 C•G 到 T•A 琥珀突变,使多种 菌株对四环素重新敏感。值得注意的是,我们发现了尽管菌株基因组高度同源,但在菌株间分布不均的表观遗传模式,这可能导致编辑效率的变化。这些发现也扩展到了 subsp. ,强调了这些结果的广泛相关性。本研究强调了需要为不同的细菌菌株开发个性化的基于 CRISPR 的基因组工程方法,并为下一代益生菌的工程设计开辟了途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4485/9335239/2e5a2bd84501/pnas.2205068119fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验