Suppr超能文献

基于鲸鱼优化算法的医学特征选择方法:COVID-19 案例研究。

Enhanced whale optimization algorithm for medical feature selection: A COVID-19 case study.

机构信息

Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran; Big Data Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran; Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Brisbane, Australia.

Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran; Big Data Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran.

出版信息

Comput Biol Med. 2022 Sep;148:105858. doi: 10.1016/j.compbiomed.2022.105858. Epub 2022 Jul 16.

Abstract

The whale optimization algorithm (WOA) is a prominent problem solver which is broadly applied to solve NP-hard problems such as feature selection. However, it and most of its variants suffer from low population diversity and poor search strategy. Introducing efficient strategies is highly demanded to mitigate these core drawbacks of WOA particularly for dealing with the feature selection problem. Therefore, this paper is devoted to proposing an enhanced whale optimization algorithm named E-WOA using a pooling mechanism and three effective search strategies named migrating, preferential selecting, and enriched encircling prey. The performance of E-WOA is evaluated and compared with well-known WOA variants to solve global optimization problems. The obtained results proved that the E-WOA outperforms WOA's variants. After E-WOA showed a sufficient performance, then, it was used to propose a binary E-WOA named BE-WOA to select effective features, particularly from medical datasets. The BE-WOA is validated using medical diseases datasets and compared with the latest high-performing optimization algorithms in terms of fitness, accuracy, sensitivity, precision, and number of features. Moreover, the BE-WOA is applied to detect coronavirus disease 2019 (COVID-19) disease. The experimental and statistical results prove the efficiency of the BE-WOA in searching the problem space and selecting the most effective features compared to comparative optimization algorithms.

摘要

鲸鱼优化算法(WOA)是一种杰出的问题求解器,广泛应用于解决 NP 难问题,如特征选择。然而,它和它的大多数变体都存在种群多样性低和搜索策略差的问题。引入有效的策略对于缓解 WOA 的这些核心缺点,特别是对于处理特征选择问题,是非常有必要的。因此,本文致力于提出一种名为 E-WOA 的增强鲸鱼优化算法,该算法使用了一种池化机制和三种有效的搜索策略,分别是迁移、优先选择和丰富包围猎物。通过评估 E-WOA 在解决全局优化问题方面的性能,并与知名的 WOA 变体进行比较,证明了 E-WOA 的优越性。在 E-WOA 表现出足够的性能之后,我们将其用于提出一种二进制 E-WOA,称为 BE-WOA,用于从医学数据集选择有效的特征。BE-WOA 已经在医学疾病数据集上进行了验证,并在适应性、准确性、敏感性、精度和特征数量方面与最新的高性能优化算法进行了比较。此外,BE-WOA 还被应用于检测 2019 年冠状病毒病(COVID-19)疾病。实验和统计结果证明了 BE-WOA 在搜索问题空间和选择最有效特征方面的效率,优于比较优化算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验