Suppr超能文献

酶动力学在加速活性位点化学中的功能作用:新兴技术和不断变化的概念。

Functional roles of enzyme dynamics in accelerating active site chemistry: Emerging techniques and changing concepts.

机构信息

Department of Chemistry, University of California, Berkeley, CA, 94720, United States; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, United States. Electronic address: https://twitter.com/S_H_Gao.

Department of Chemistry, University of California, Berkeley, CA, 94720, United States; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, United States; Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, United States.

出版信息

Curr Opin Struct Biol. 2022 Aug;75:102434. doi: 10.1016/j.sbi.2022.102434. Epub 2022 Jul 21.

Abstract

With the growing acceptance of the contribution of protein conformational ensembles to enzyme catalysis and regulation, research in the field of protein dynamics has shifted toward an understanding of the atomistic properties of protein dynamical networks and the mechanisms and time scales that control such behavior. A full description of an enzymatic reaction coordinate is expected to extend beyond the active site and include site-specific networks that communicate with the protein/water interface. Advances in experimental tools for the spatial resolution of thermal activation pathways are being complemented by biophysical methods for visualizing dynamics in real time. An emerging multidimensional model integrates the impacts of bound substrate/effector on the distribution of protein substates that are in rapid equilibration near room temperature with reaction-specific protein embedded heat transfer conduits.

摘要

随着对蛋白质构象整体在酶催化和调节中作用的认可不断增加,蛋白质动力学领域的研究已经转向理解蛋白质动力学网络的原子特性以及控制这种行为的机制和时间尺度。对酶反应坐标的完整描述预计将超出活性位点的范围,包括与蛋白质/水界面进行通信的特定于位点的网络。用于空间分辨热激活途径的实验工具的进步正在得到实时可视化动力学的生物物理方法的补充。一个新兴的多维模型将结合束缚底物/效应物对蛋白质亚基分布的影响,这些亚基在室温附近处于快速平衡状态,并与特定于反应的蛋白质嵌入式热传递管道相结合。

相似文献

1
Functional roles of enzyme dynamics in accelerating active site chemistry: Emerging techniques and changing concepts.
Curr Opin Struct Biol. 2022 Aug;75:102434. doi: 10.1016/j.sbi.2022.102434. Epub 2022 Jul 21.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
3
A Biophysical Perspective on Enzyme Catalysis.
Biochemistry. 2019 Feb 12;58(6):438-449. doi: 10.1021/acs.biochem.8b01004. Epub 2018 Dec 18.
4
The dynamical nature of enzymatic catalysis.
Acc Chem Res. 2015 Feb 17;48(2):407-13. doi: 10.1021/ar5002928. Epub 2014 Dec 24.
5
Protein conformational populations and functionally relevant substates.
Acc Chem Res. 2014 Jan 21;47(1):149-56. doi: 10.1021/ar400084s. Epub 2013 Aug 29.
7
Dynamically achieved active site precision in enzyme catalysis.
Acc Chem Res. 2015 Feb 17;48(2):449-56. doi: 10.1021/ar5003347. Epub 2014 Dec 24.
8
Protein dynamics and electrostatics in the function of p-hydroxybenzoate hydroxylase.
Arch Biochem Biophys. 2005 Jan 1;433(1):297-311. doi: 10.1016/j.abb.2004.09.029.
10
Role of protein dynamics in reaction rate enhancement by enzymes.
J Am Chem Soc. 2005 Nov 2;127(43):15248-56. doi: 10.1021/ja055251s.

引用本文的文献

1
Dynamically Interacting Protein Networks Provide a Mechanism to Overcome the Enormous Intrinsic Barrier to Orotidine 5'-Monophosphate Decarboxylation.
ACS Cent Sci. 2025 Jul 11;11(8):1377-1390. doi: 10.1021/acscentsci.5c00590. eCollection 2025 Aug 27.
2
Drug resistance and tumor heterogeneity: cells and ensembles.
Biophys Rev. 2025 May 31;17(3):759-779. doi: 10.1007/s12551-025-01320-y. eCollection 2025 Jun.
3
A Thermodynamic Cycle to Predict the Competitive Inhibition Outcomes of an Evolving Enzyme.
J Chem Theory Comput. 2025 May 13;21(9):4910-4920. doi: 10.1021/acs.jctc.5c00193. Epub 2025 Apr 23.
6
Mapping Protein Conformational Landscapes from Crystallographic Drug Fragment Screens.
J Chem Inf Model. 2024 Dec 9;64(23):8937-8951. doi: 10.1021/acs.jcim.4c01380. Epub 2024 Nov 12.
7
Hydrogen/Deuterium Exchange Mass Spectrometry: Fundamentals, Limitations, and Opportunities.
Mol Cell Proteomics. 2024 Nov;23(11):100853. doi: 10.1016/j.mcpro.2024.100853. Epub 2024 Oct 9.
8
Mapping protein conformational landscapes from crystallographic drug fragment screens.
bioRxiv. 2024 Jul 30:2024.07.29.605395. doi: 10.1101/2024.07.29.605395.
9
Temporal Resolution of Activity-Related Solvation Dynamics in the TIM Barrel Enzyme Murine Adenosine Deaminase.
ACS Catal. 2024 Apr 5;14(7):4554-4567. doi: 10.1021/acscatal.3c02687. Epub 2024 Mar 12.

本文引用的文献

1
Temporal and spatial resolution of distal protein motions that activate hydrogen tunneling in soybean lipoxygenase.
Proc Natl Acad Sci U S A. 2023 Mar 7;120(10):e2211630120. doi: 10.1073/pnas.2211630120. Epub 2023 Mar 3.
2
Chemical Mapping Exposes the Importance of Active Site Interactions in Governing the Temperature Dependence of Enzyme Turnover.
ACS Catal. 2021 Dec 17;11(24):14854-14863. doi: 10.1021/acscatal.1c04679. Epub 2021 Nov 29.
3
Evolution of Optimized Hydride Transfer Reaction and Overall Enzyme Turnover in Human Dihydrofolate Reductase.
Biochemistry. 2021 Dec 21;60(50):3822-3828. doi: 10.1021/acs.biochem.1c00558. Epub 2021 Dec 7.
4
Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems.
Chem Rev. 2022 Apr 27;122(8):7562-7623. doi: 10.1021/acs.chemrev.1c00279. Epub 2021 Sep 7.
5
Revealing enzyme functional architecture via high-throughput microfluidic enzyme kinetics.
Science. 2021 Jul 23;373(6553). doi: 10.1126/science.abf8761.
6
Evolution of dynamical networks enhances catalysis in a designer enzyme.
Nat Chem. 2021 Oct;13(10):1017-1022. doi: 10.1038/s41557-021-00763-6. Epub 2021 Aug 19.
8
Acceleration of catalysis in dihydrofolate reductase by transient, site-specific photothermal excitation.
Proc Natl Acad Sci U S A. 2021 Jan 26;118(4). doi: 10.1073/pnas.2014592118.
9
Evolution, folding, and design of TIM barrels and related proteins.
Curr Opin Struct Biol. 2021 Jun;68:94-104. doi: 10.1016/j.sbi.2020.12.007. Epub 2021 Jan 13.
10
Identification of Thermal Conduits That Link the Protein-Water Interface to the Active Site Loop and Catalytic Base in Enolase.
J Am Chem Soc. 2021 Jan 20;143(2):785-797. doi: 10.1021/jacs.0c09423. Epub 2021 Jan 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验