Suppr超能文献

长期接触 与死亡率之间的浓度-反应关系估计中暴露测量误差的影响。

The Impact of Exposure Measurement Error on the Estimated Concentration-Response Relationship between Long-Term Exposure to and Mortality.

机构信息

Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.

Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA.

出版信息

Environ Health Perspect. 2022 Jul;130(7):77006. doi: 10.1289/EHP10389. Epub 2022 Jul 29.

Abstract

BACKGROUND

Exposure measurement error is a central concern in air pollution epidemiology. Given that studies have been using ambient air pollution predictions as proxy exposure measures, the potential impact of exposure error on health effect estimates needs to be comprehensively assessed.

OBJECTIVES

We aimed to generate wide-ranging scenarios to assess direction and magnitude of bias caused by exposure errors under plausible concentration-response relationships between annual exposure to fine particulate matter [PM in aerodynamic diameter ()] and all-cause mortality.

METHODS

In this simulation study, we use daily predictions at spatial resolution to estimate annual exposures and their uncertainties for ZIP Codes of residence across the contiguous United States between 2000 and 2016. We consider scenarios in which we vary the error type (classical or Berkson) and the true concentration-response relationship between exposure and mortality (linear, quadratic, or soft-threshold-i.e., a smooth approximation to the hard-threshold model). In each scenario, we generate numbers of deaths using error-free exposures and confounders of concurrent air pollutants and neighborhood-level covariates and perform epidemiological analyses using error-prone exposures under correct specification or misspecification of the concentration-response relationship between exposure and mortality, adjusting for the confounders.

RESULTS

We simulate 1,000 replicates of each of 162 scenarios investigated. In general, both classical and Berkson errors can bias the concentration-response curve toward the null. The biases remain small even when using three times the predicted uncertainty to generate errors and are relatively larger at higher exposure levels.

DISCUSSION

Our findings suggest that the causal determination for long-term exposure and mortality is unlikely to be undermined when using high-resolution ambient predictions given that the estimated effect is generally smaller than the truth. The small magnitude of bias suggests that epidemiological findings are relatively robust against the exposure error. In practice, the use of ambient predictions with a finer spatial resolution will result in smaller bias. https://doi.org/10.1289/EHP10389.

摘要

背景

暴露测量误差是空气污染流行病学的核心关注点。鉴于研究一直将环境空气污染预测作为暴露测量的替代指标,因此需要全面评估暴露误差对健康效应估计的潜在影响。

目的

我们旨在生成广泛的情景,以评估在细颗粒物( )年暴露与全因死亡率之间存在合理浓度-反应关系的情况下,暴露误差引起的偏差方向和幅度。

方法

在这项模拟研究中,我们使用每日预测值在空间分辨率上估算 2000 年至 2016 年期间美国大陆各地邮政编码的年 暴露量及其不确定性。我们考虑了以下几种情况:误差类型(经典或 Berkson)以及 暴露与死亡率之间的真实浓度-反应关系(线性、二次或软阈值,即硬阈值模型的平滑近似)。在每种情况下,我们使用无误差暴露和并发空气污染物以及邻里水平协变量的混杂因素生成死亡人数,并在正确或错误指定 暴露与死亡率之间的浓度-反应关系的情况下使用有误差的暴露进行流行病学分析,同时调整混杂因素。

结果

我们模拟了每种情况下的 1000 个重复。一般来说,经典误差和 Berkson 误差都可能使浓度-反应曲线向零值倾斜。即使使用预测不确定性的三倍来生成误差,偏差仍然很小,并且在较高的暴露水平下偏差相对较大。

讨论

我们的研究结果表明,给定使用高分辨率环境预测估计的效应通常小于真实值,使用高分辨率环境预测来确定长期 暴露和死亡率的因果关系不太可能被破坏。偏差的幅度较小表明,流行病学发现对暴露误差具有相对稳健性。实际上,使用具有更精细空间分辨率的环境预测将导致更小的偏差。https://doi.org/10.1289/EHP10389.

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c06/9337229/45ebeb2fd083/ehp10389_f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验