Suppr超能文献

通过层状杂化钙钛矿和铬敏化剂组装体的超分子控制来调节共振能量转移。

Modulating Resonance Energy Transfer with Supramolecular Control in a Layered Hybrid Perovskite and Chromium Photosensitizer Assembly.

机构信息

Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.

Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India.

出版信息

ACS Appl Mater Interfaces. 2023 May 31;15(21):25148-25160. doi: 10.1021/acsami.2c09281. Epub 2022 Aug 9.

Abstract

Recently, the low-dimensional organic-inorganic halide perovskites (OIHP) have been exploited heavily for their favorable exciton dynamics, broad-band emission, remarkable stability, and tunable band-edge excited-state energy compared to their 3D counterparts for potential optoelectronic applications. Low-dimensional perovskites are generally good candidates for utilization as room-temperature photoluminescence (PL) materials. Further, doping divalent transition metals like Mn into OIHP is expected to introduce a T-A-based low-energy luminescence emission around 600 nm; an optical property that is favorable for biomedical optoelectronics. Doping Mn in the perovskite lattice is also expected to induce the generation of cytotoxic singlet oxygen species (O), a ROS that is being exploited for various therapeutic applications. To integrate these optical and therapeutic properties of a 2D (PEA)PbBr (Pb PeV; PEA = phenylethylammonium cation) perovskite alloyed with Mn ions (Mn:PbPeV) and the option for a photoinduced energy transfer process involving a Cr(III)-based O generating photosensitizer (CrPS), we designed a unique purpose-built nanoassembly (Mn:PbPeV@PCD) using the encapsulation properties of a water-soluble polymer derived from β-cyclodextrin (PCD). Here the PCD is observed to modulate the classical internal energy transfer of Pb exciton to alloyed Mn orange emission, resulting in the emergence of a new blue emission. The addition of CrPS into the Mn:PbPeV@PCD to generate the CrPS@Mn:PbPeV@PCD assembly results in restoring perovskite luminescence followed by the external energy transfer to CrPS. We have elucidated the mechanism of these cascade energy transfer processes between multiple components using steady-state and time-resolved luminescence techniques. Efficient ROS generation and its potential to induce an oxidation reaction of a biomolecule are realized using guanine as the target molecule. Further photoinduced cleavage studies with biomolecules confirmed the efficacy of the nanoassembly in inducing the cleavage of guanine-rich DNA. The study opens up a new direction in the field of perovskite for biomedical applications.

摘要

最近,与三维(3D) counterparts 相比,低维有机-无机卤化物钙钛矿(OIHP)具有有利的激子动力学、宽频发射、显著的稳定性和可调谐的能带边缘激发态能量,因此被广泛用于潜在的光电应用。低维钙钛矿通常是作为室温光致发光(PL)材料的良好候选材料。此外,将二价过渡金属如 Mn 掺杂到 OIHP 中有望引入一个基于 T-A 的低能量发光发射,其发射波长约为 600nm;这是一种有利于生物医学光电应用的光学性质。在钙钛矿晶格中掺杂 Mn 也有望诱导细胞毒性单线态氧(1O2)的产生,1O2 是一种 ROS,正在各种治疗应用中得到利用。为了整合二维(PEA)PbBr(Pb PeV;PEA = 苯乙基铵阳离子)钙钛矿与 Mn 离子(Mn:PbPeV)合金的光学和治疗特性,以及涉及基于 Cr(III)的产生 1O2 的光致敏剂(CrPS)的光诱导能量转移过程的选择,我们使用了一种由β-环糊精(PCD)衍生的水溶性聚合物的封装特性,设计了一种独特的专用纳米组装体(Mn:PbPeV@PCD)。在这里,PCD 被观察到调节 Pb 激子到合金 Mn 橙发射的经典内部能量转移,导致新的蓝色发射的出现。将 CrPS 添加到 Mn:PbPeV@PCD 中以生成 CrPS@Mn:PbPeV@PCD 组装体导致钙钛矿发光恢复,然后通过外部能量转移到 CrPS。我们使用稳态和时间分辨荧光技术阐明了这些多组分级联能量转移过程的机制。使用鸟嘌呤作为靶分子,实现了 ROS 的有效生成及其诱导生物分子氧化反应的能力。进一步使用生物分子的光诱导断裂研究证实了纳米组装体诱导富含鸟嘌呤的 DNA 断裂的功效。该研究为钙钛矿在生物医学应用领域开辟了新的方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验