Suppr超能文献

一种针对老年人远程健康监测的系统方法:引入零交互数字废气物。

A systems approach towards remote health-monitoring in older adults: Introducing a zero-interaction digital exhaust.

作者信息

Schütz Narayan, Knobel Samuel E J, Botros Angela, Single Michael, Pais Bruno, Santschi Valérie, Gatica-Perez Daniel, Buluschek Philipp, Urwyler Prabitha, Gerber Stephan M, Müri René M, Mosimann Urs P, Saner Hugo, Nef Tobias

机构信息

ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland.

LaSource School of Nursing Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Lausanne, Switzerland.

出版信息

NPJ Digit Med. 2022 Aug 16;5(1):116. doi: 10.1038/s41746-022-00657-y.

Abstract

Using connected sensing devices to remotely monitor health is a promising way to help transition healthcare from a rather reactive to a more precision medicine oriented proactive approach, which could be particularly relevant in the face of rapid population ageing and the challenges it poses to healthcare systems. Sensor derived digital measures of health, such as digital biomarkers or digital clinical outcome assessments, may be used to monitor health status or the risk of adverse events like falls. Current research around such digital measures has largely focused on exploring the use of few individual measures obtained through mobile devices. However, especially for long-term applications in older adults, this choice of technology may not be ideal and could further add to the digital divide. Moreover, large-scale systems biology approaches, like genomics, have already proven beneficial in precision medicine, making it plausible that the same could also hold for remote-health monitoring. In this context, we introduce and describe a zero-interaction digital exhaust: a set of 1268 digital measures that cover large parts of a person's activity, behavior and physiology. Making this approach more inclusive of older adults, we base this set entirely on contactless, zero-interaction sensing technologies. Applying the resulting digital exhaust to real-world data, we then demonstrate the possibility to create multiple ageing relevant digital clinical outcome assessments. Paired with modern machine learning, we find these assessments to be surprisingly powerful and often on-par with mobile approaches. Lastly, we highlight the possibility to discover novel digital biomarkers based on this large-scale approach.

摘要

使用连接的传感设备远程监测健康状况是一种很有前景的方式,有助于推动医疗保健从较为被动的模式向更以精准医疗为导向的主动模式转变,面对人口迅速老龄化及其给医疗系统带来的挑战时,这一点可能尤为重要。传感器得出的健康数字指标,如数字生物标志物或数字临床结局评估,可用于监测健康状况或跌倒等不良事件的风险。目前围绕此类数字指标的研究主要集中在探索通过移动设备获取的少数个体指标的应用。然而,特别是对于老年人的长期应用而言,这种技术选择可能并不理想,还可能进一步加剧数字鸿沟。此外,大规模系统生物学方法,如基因组学,已在精准医疗中证明有益,因此远程健康监测也可能如此。在此背景下,我们引入并描述了一种零交互数字痕迹:一组涵盖个人活动、行为和生理大部分方面的1268个数字指标。为使这种方法更能包容老年人,我们完全基于非接触式、零交互传感技术来构建这组指标。将由此产生的数字痕迹应用于实际数据,我们随后展示了创建多个与衰老相关的数字临床结局评估的可能性。与现代机器学习相结合,我们发现这些评估出人意料地强大,且常常与移动方法不相上下。最后,我们强调基于这种大规模方法发现新型数字生物标志物的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c21/9381599/74f493beaa9a/41746_2022_657_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验