Polo A, Carta M, Delogu F, Rustici M, Budroni M A
Dipartimento di Chimica e Farmacia, Università Degli Studi di Sassari, Sassari, Italy.
Dipartimento di Ingegneria Meccanica, Chimica, e Dei Materiali, Università Degli Studi di Cagliari, Cagliari, Italy.
Front Chem. 2022 Aug 5;10:915217. doi: 10.3389/fchem.2022.915217. eCollection 2022.
Understanding the dynamics of milling bodies is key to optimize the mixing and the transfer of mechanical energy in mechanochemical processing. In this work, we present a comparative study of mechanochemical reactors driven by harmonic pendular forcing and characterized by different geometries of the lateral borders. We show that the shape of the reactor bases, either flat or curved, along with the size of the milling body and the elasticity of the collisions, represents relevant parameters that govern the dynamical regimes within the system and can control the transition from periodic to chaotic behaviors. We single out possible criteria to preserve target dynamical scenarios when the size of the milling body is changed, by adapting the relative extent of the spatial domain. This allows us to modulate the average energy of the collisions while maintaining the same dynamics and paves the way for a unifying framework to control the dynamical response in different experimental conditions. We finally explore the dynamical and energetic impact of an increasingly asymmetric mechanical force.
了解研磨体的动力学特性是优化机械化学过程中机械能混合与传递的关键。在这项工作中,我们对由谐波摆动力驱动且具有不同侧向边界几何形状的机械化学反应器进行了对比研究。我们表明,反应器底部的形状(平坦或弯曲)、研磨体的尺寸以及碰撞的弹性,是控制系统内动力学状态并能控制从周期性行为到混沌行为转变的相关参数。当研磨体尺寸改变时,我们通过调整空间域的相对范围,找出了保持目标动力学场景的可能标准。这使我们能够在保持相同动力学的同时调节碰撞的平均能量,为在不同实验条件下控制动力学响应的统一框架铺平了道路。我们最终探讨了日益不对称的机械力的动力学和能量影响。