Suppr超能文献

微流控制造脂质体:通过实验设计和机器学习进行开发和优化。

Microfluidic Manufacturing of Liposomes: Development and Optimization by Design of Experiment and Machine Learning.

机构信息

Université Paris Cité, CNRS, INSERM, UTCBS (Chemical and Biological Technologies for Health Group), 4 avenue de l'observatoire, 75006Paris, France.

Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, c/Prof. García González n◦2, 41012Seville, Spain.

出版信息

ACS Appl Mater Interfaces. 2022 Sep 7;14(35):39736-39745. doi: 10.1021/acsami.2c06627. Epub 2022 Aug 24.

Abstract

Liposomes constitute the most exploited drug-nanocarrier with several liposomal drugs on the market. Microfluidic-based preparation methods stand up as a promising approach with high reproducibility and the ability to scale up. In this study, liposomes composed of DOPC, cholesterol, and DSPE-PEG 2000 with different molar ratios were fabricated using a microfluidic system. Process and conditions were optimized by applying design of experiments (DoE) principles. Furthermore, data were used to build an artificial neural network (ANN) model, to predict size and polydispersity index (PDI). Sets of runs were designed by DoE and performed on a micromixer microfluidic chip. Lipids' molar ratio and the process parameters, i.e. total flow rate (TFR) and flow rate ratio (FRR), were found to be the most influential factors on the formation of vesicles with target size and PDI under 100 nm and lower than 0.2, respectively. Size and PDI were predicted by the ANN model for 3 preparations with defined experimental conditions. The results showed no significant difference in size and PDI between the preparations and their values calculated with the ANN. In conclusion, production of optimized liposomes with high reproducibility was achieved by the application of microfluidic manufacturing processes, DoE, and Artificial Intelligence (AI). Microfluidic-based preparation methods assisted by computational tools would enable a faster development and clinical transfer of nanobased medications.

摘要

脂质体是应用最广泛的药物纳米载体,已有多种脂质体药物上市。基于微流控的制备方法具有高重现性和可扩展性,是一种很有前途的方法。在这项研究中,使用微流控系统制备了由 DOPC、胆固醇和 DSPE-PEG 2000 组成的脂质体,其摩尔比不同。通过应用实验设计(DoE)原理对工艺和条件进行了优化。此外,还使用数据构建了人工神经网络(ANN)模型,以预测粒径和多分散指数(PDI)。通过 DoE 设计了多组运行,并在微混合器微流控芯片上进行了实验。研究发现,脂质摩尔比和工艺参数(总流速(TFR)和流速比(FRR))是影响形成目标粒径和 PDI 低于 100nm 和 0.2 的囊泡的最主要因素。通过 ANN 模型对 3 种具有明确实验条件的制剂进行了预测。结果表明,制剂的粒径和 PDI 与 ANN 计算值无显著差异。总之,通过应用微流控制造工艺、DoE 和人工智能(AI),实现了具有高重现性的优化脂质体的生产。借助计算工具的基于微流控的制备方法将能够加快纳米药物的开发和临床转化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验