Institute of Nano Science and Technology, Knowledge City, Sector-81, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India.
ACS Biomater Sci Eng. 2022 Sep 12;8(9):3810-3818. doi: 10.1021/acsbiomaterials.2c00165. Epub 2022 Aug 25.
The imbalance in the bone remodeling process with more bone resorption by osteoclasts compared to bone formation by osteoblasts results in a metabolic bone disorder known as osteoporosis. This condition reduces the bone mineral density and increases the risk of fractures due to low bone mass and disrupted bone microarchitecture. Osteoclastogenesis increases when the receptor activator NFκB ligand (RANKL) on the osteoblast surface binds to the receptor activator NFκB (RANK) on the osteoclast surface and the function of the decoy receptor of RANKL, osteoprotegrin, is compromised due to external stimuli such as heparin and lipopolysaccharides. The RANK/RANKL axis promotes the nuclear factor kappa B (NFκB) expression, which in turn increases the histone methyltransferase activity of EzH2 and EzH1 for the epigenetic regulation of osteoclastogenesis-related genes. Genistein counteracts NFκB-induced osteoclastogenesis and downstream signaling through the direct regulation of histone methyltransferase, EzH2 and EzH1, transcription. However, genistein possesses limitations like low bioavailability, low water solubility, high estrogen activity, and thyroid side effects, which obstruct its therapeutic usage. Here, the nanoemulsified formulation of genistein with vitamin D was utilized to circumvent the limitations of genistein so that it can be utilized for therapeutic purposes in osteoporosis management. The nanoemulsification of genistein and vitamin D was performed through the spontaneous emulsification using Tween 80 and medium chain triglyceride oil as an organic phase. The physiologically stable and biocompatible combination of the genistein and vitamin D nanoemulsion (GVNE) exhibited the controlled release pattern of genistein with Korsmeyer-Peppas and Higuchi models under different pH conditions (7.4, 6.5, and 1.2). The GVNE potentially enhanced the therapeutic efficacy under osteoporosis models and helped restore disease parameters like alkaline phosphatase activity, tartrate-resistant acid phosphatase activity, and the formation of multinuclear giant cells. Molecularly, the GVNE overturned the LPS-induced osteoclastogenesis by downregulation of NFκB expression along with its binding on EzH2 and EzH1 promoters. GVNE effects on the osteoporosis model established it as an efficient antiosteoporotic therapy. This nanonutraceutical-based formulation provides an epigenetic regulation of osteoporosis management and opens new avenues for alternate epigenetic therapies for osteoporosis.
在骨重塑过程中,破骨细胞的骨吸收比成骨细胞的骨形成更多,导致一种代谢性骨病,即骨质疏松症。这种情况会降低骨矿物质密度,并由于骨量减少和骨微结构破坏而增加骨折的风险。当破骨细胞表面的受体激活核因子 kappa B 配体 (RANKL) 与破骨细胞表面的受体激活核因子 kappa B (RANK) 结合时,破骨细胞生成增加,并且由于肝素和脂多糖等外部刺激,RANKL 的诱饵受体骨保护蛋白的功能受到损害。RANK/RANKL 轴促进核因子 kappa B (NFκB) 的表达,进而增加组蛋白甲基转移酶 EzH2 和 EzH1 的活性,用于破骨细胞生成相关基因的表观遗传调控。金雀异黄素通过直接调节组蛋白甲基转移酶 EzH2 和 EzH1 的转录,拮抗 NFκB 诱导的破骨细胞生成和下游信号转导。然而,金雀异黄素存在生物利用度低、水溶性低、雌激素活性高和甲状腺副作用等局限性,阻碍了其治疗用途。在这里,利用维生素 D 对金雀异黄素进行纳米乳化处理,以克服金雀异黄素的局限性,使其可用于骨质疏松症管理的治疗目的。通过使用吐温 80 和中链甘油三酯油作为有机相进行自发乳化来进行金雀异黄素和维生素 D 的纳米乳化。金雀异黄素和维生素 D 的纳米乳(GVNE)具有生理稳定和生物相容性,在不同 pH 值条件(7.4、6.5 和 1.2)下,根据 Korsmeyer-Peppas 和 Higuchi 模型表现出金雀异黄素的控制释放模式。GVNE 可能在骨质疏松症模型下增强治疗效果,并有助于恢复碱性磷酸酶活性、抗酒石酸酸性磷酸酶活性和多核巨细胞形成等疾病参数。从分子水平上看,GVNE 通过下调 NFκB 表达及其与 EzH2 和 EzH1 启动子的结合,逆转了 LPS 诱导的破骨细胞生成。GVNE 对骨质疏松症模型的作用使其成为一种有效的抗骨质疏松症治疗方法。这种基于纳米营养的配方为骨质疏松症管理提供了一种表观遗传调控,并为骨质疏松症的替代表观遗传治疗开辟了新途径。