Suppr超能文献

有向无环图在外科研究中的应用。

Directed Acyclic Graphs in Surgical Research.

机构信息

Department of Surgery, Medstar Georgetown University Hospital, Washington, District of Columbia.

Departments of Emergency Medicine and Anesthesiology, Johns Hopkins University School of Medicine, Baltimore, Maryland.

出版信息

J Surg Res. 2023 Feb;282:285-288. doi: 10.1016/j.jss.2022.07.017. Epub 2022 Aug 29.

Abstract

Surgical research often utilizes multivariable regression to evaluate causal relationships between variables, but there is usually little explanation of the decision-making regarding which variables were controlled for. We propose that directed acyclic graphs (DAGs)-a formal logic tool that illustrates connections between variables-should be used to define and communicate variable relationships to readers and other audiences. While literature in epidemiology and other medical fields has recently started to incorporate DAGs more, they are still seldom seen in surgical publications. In this review, we describe the background and need for DAGs and argue for their use. Next, we explain how bias can be introduced without a thoughtful approach to control variable selection. Finally, we recommend that researchers communicate their choices and rationale when selecting control variables in published surgical research.

摘要

外科研究通常使用多变量回归来评估变量之间的因果关系,但通常很少解释决定控制哪些变量的决策。我们建议使用有向无环图(DAG)-一种说明变量之间关系的正式逻辑工具-向读者和其他受众定义和传达变量关系。虽然最近流行病学和其他医学领域的文献开始更多地纳入 DAG,但它们在外科出版物中仍然很少见。在这篇综述中,我们描述了 DAG 的背景和必要性,并主张使用它们。接下来,我们解释了如果没有深思熟虑的方法来控制变量选择,可能会引入哪些偏差。最后,我们建议研究人员在发表的外科研究中选择控制变量时,传达他们的选择和理由。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验