Capelli Riccardo, Menke Alexander J, Pan Hongjun, Janesko Benjamin G, Simanek Eric E, Pavan Giovanni M
Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy.
Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States.
ACS Omega. 2022 Aug 8;7(34):30291-30296. doi: 10.1021/acsomega.2c03536. eCollection 2022 Aug 30.
Inspired by therapeutic potential, the molecular engineering of macrocycles is garnering increased interest. Exercising control with design, however, is challenging due to the dynamic behavior that these molecules must demonstrate in order to be bioactive. Herein, the value of metadynamics simulations is demonstrated: the free-energy surfaces calculated reveal folded and flattened accessible conformations of a 24-atom macrocycle separated by barriers of ∼6 kT under experimentally relevant conditions. Simulations reveal that the dominant conformer is folded-an observation consistent with a solid-state structure determined by X-ray crystallography and a network of rOes established by H NMR. Simulations suggest that the macrocycle exists as a rapidly interconverting pair of enantiomeric, folded structures. Experimentally, H NMR shows a single species at room temperature. However, at lower temperature, the interconversion rate between these enantiomers becomes markedly slower, resulting in the decoalescence of enantiotopic methylene protons into diastereotopic, distinguishable resonances due to the persistence of conformational chirality. The emergence of conformational chirality provides critical experimental support for the simulations, revealing the dynamic nature of the scaffold-a trait deemed critical for oral bioactivity.
受治疗潜力的启发,大环化合物的分子工程正引起越来越多的关注。然而,由于这些分子为了具有生物活性必须表现出的动态行为,通过设计进行控制具有挑战性。在此,展示了元动力学模拟的价值:计算得到的自由能表面揭示了在实验相关条件下,一个24原子大环化合物的折叠和扁平可及构象,它们被约6 kT的势垒隔开。模拟表明,主要构象体是折叠的——这一观察结果与通过X射线晶体学确定的固态结构以及通过1H NMR建立的rOes网络一致。模拟表明,大环化合物以一对对映体折叠结构快速相互转化的形式存在。实验上,1H NMR在室温下显示为单一物种。然而,在较低温度下,这些对映体之间的相互转化速率明显变慢,由于构象手性的持续存在,对映异位亚甲基质子的去偶合导致它们变成非对映异位、可区分的共振。构象手性的出现为模拟提供了关键的实验支持,揭示了支架的动态性质——这一特性被认为对口服生物活性至关重要。