Suppr超能文献

基于 MEMD-HHT 的 3DCNN 脑电信号情绪检测

MEMD-HHT based Emotion Detection from EEG using 3D CNN.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:284-287. doi: 10.1109/EMBC48229.2022.9871012.

Abstract

In this study, the Multivariate Empirical Mode Decomposition (MEMD) is applied to multichannel EEG to obtain scale-aligned intrinsic mode functions (IMFs) as input features for emotion detection. The IMFs capture local signal variation related to emotion changes. Among the extracted IMFs, the high oscillatory ones are found to be significant for the intended task. The Marginal Hilbert spectrum (MHS) is computed from the selected IMFs. A 3D convolutional neural network (CNN) is adopted to perform emotion detection with spatial-temporal-spectral feature representations that are constructed by stacking the multi-channel MHS over consecutive signal segments. The proposed approach is evaluated on the publicly available DEAP database. On binary classification of valence and arousal level (high versus low), the attained accuracies are 89.25% and 86.23% respectively, which significantly outperform previously reported systems with 2D CNN and/or conventional temporal and spectral features.

摘要

在这项研究中,多变量经验模态分解 (MEMD) 被应用于多通道 EEG 中,以获得与情绪变化相关的局部信号变化的尺度对齐固有模态函数 (IMF) 作为情绪检测的输入特征。IMF 捕获。在所提取的 IMF 中,发现高振荡 IMF 对预期任务具有重要意义。从所选 IMF 计算 Marginal Hilbert 谱 (MHS)。采用三维卷积神经网络 (CNN) 通过构建由多通道 MHS 堆叠在连续信号段上来进行时空频谱特征表示的情绪检测。所提出的方法在公开可用的 DEAP 数据库上进行了评估。在 valence 和 arousal 水平的二进制分类(高与低)中,分别达到了 89.25%和 86.23%的准确率,明显优于以前使用 2D CNN 和/或传统时间和频谱特征的报告系统。

相似文献

1
MEMD-HHT based Emotion Detection from EEG using 3D CNN.
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:284-287. doi: 10.1109/EMBC48229.2022.9871012.
2
Functional Connectivity Analysis in Multi-channel EEG for Emotion Detection with Phase Locking Value and 3D CNN.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4. doi: 10.1109/EMBC40787.2023.10340922.
6
Multi-scale 3D-CRU for EEG emotion recognition.
Biomed Phys Eng Express. 2024 May 14;10(4). doi: 10.1088/2057-1976/ad43f1.
7
An emotion recognition method based on EWT-3D-CNN-BiLSTM-GRU-AT model.
Comput Biol Med. 2024 Feb;169:107954. doi: 10.1016/j.compbiomed.2024.107954. Epub 2024 Jan 1.
8
EEG-Based Emotion Recognition by Convolutional Neural Network with Multi-Scale Kernels.
Sensors (Basel). 2021 Jul 27;21(15):5092. doi: 10.3390/s21155092.
9
Emotion recognition with reduced channels using CWT based EEG feature representation and a CNN classifier.
Biomed Phys Eng Express. 2024 Apr 30;10(4). doi: 10.1088/2057-1976/ad31f9.
10
Multivariate Empirical Mode Decomposition of EEG for Mental State Detection at Localized Brain Lobes.
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3694-3697. doi: 10.1109/EMBC48229.2022.9871890.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验