Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:143-147. doi: 10.1109/EMBC48229.2022.9871031.
In this paper, a multiple linear regression model for estimating the Carotid-to-femoral pulse wave velocity (cf-PWV) from a single non-invasive peripheral pulse wave, namely blood pressure or photoplethysmography, is proposed. The training and testing datasets were extracted from in-silico, publicly available, pulse waves and hemodynamics data. The proposed model relies on a preprocessing and features extraction steps, which are performed using a semi-classical signal analysis (SCSA) method. The obtained results provide more evidence for the feasibility of machine learning and the SCSA method as a smart tool for the efficient assessment of the cf-PWV.
本文提出了一种从单个非侵入性外周脉搏波(即血压或光电容积脉搏波)估计颈股脉搏波速度(cf-PWV)的多元线性回归模型。训练和测试数据集是从仿真的、公开可用的脉搏波和血液动力学数据中提取的。所提出的模型依赖于预处理和特征提取步骤,这些步骤使用半经典信号分析(SCSA)方法来执行。所得结果为机器学习和 SCSA 方法作为 cf-PWV 有效评估的智能工具的可行性提供了更多证据。