Suppr超能文献

内质网中甘油磷脂的合成和脂滴的形成。

Glycerolipid Synthesis and Lipid Droplet Formation in the Endoplasmic Reticulum.

机构信息

Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA

Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.

出版信息

Cold Spring Harb Perspect Biol. 2023 May 2;15(5):a041246. doi: 10.1101/cshperspect.a041246.

Abstract

More than 60 years ago, Eugene Kennedy and coworkers elucidated the endoplasmic reticulum (ER)-based pathways of glycerolipid synthesis, including the synthesis of phospholipids and triacylglycerols (TGs). The reactions of the Kennedy pathway were identified by studying the conversion of lipid intermediates and the isolation of biochemical enzymatic activities, but the molecular basis for most of these reactions was unknown. With recent progress in the cell biology, biochemistry, and structural biology in this area, we have a much more mechanistic understanding of this pathway and its reactions. In this review, we provide an overview of molecular aspects of glycerolipid synthesis, focusing on recent insights into the synthesis of TGs. Further, we go beyond the Kennedy pathway to describe the mechanisms for storage of TG in cytosolic lipid droplets and discuss how overwhelming these pathways leads to ER stress and cellular toxicity, as seen in diseases linked to lipid overload and obesity.

摘要

60 多年前,Eugene Kennedy 和他的同事阐明了甘油磷脂合成的内质网(ER)途径,包括磷脂和三酰基甘油(TGs)的合成。通过研究脂质中间体的转化和生化酶活性的分离,确定了 Kennedy 途径的反应,但这些反应的大多数分子基础尚不清楚。随着该领域在细胞生物学、生物化学和结构生物学方面的最新进展,我们对该途径及其反应有了更深入的机制理解。在这篇综述中,我们概述了甘油磷脂合成的分子方面,重点介绍了最近对 TG 合成的深入了解。此外,我们超越了 Kennedy 途径,描述了胞质脂滴中 TG 储存的机制,并讨论了这些途径如何导致内质网应激和细胞毒性,如与脂质过载和肥胖相关的疾病中所见。

相似文献

1
Glycerolipid Synthesis and Lipid Droplet Formation in the Endoplasmic Reticulum.
Cold Spring Harb Perspect Biol. 2023 May 2;15(5):a041246. doi: 10.1101/cshperspect.a041246.
2
A unifying mechanism for seipin-mediated lipid droplet formation.
FEBS Lett. 2024 May;598(10):1116-1126. doi: 10.1002/1873-3468.14825. Epub 2024 Feb 13.
4
Membrane Curvature Catalyzes Lipid Droplet Assembly.
Curr Biol. 2020 Jul 6;30(13):2481-2494.e6. doi: 10.1016/j.cub.2020.04.066. Epub 2020 May 21.
5
Computational Studies of Lipid Droplets.
J Phys Chem B. 2022 Mar 24;126(11):2145-2154. doi: 10.1021/acs.jpcb.2c00292. Epub 2022 Mar 9.
6
Spatial compartmentalization of lipid droplet biogenesis.
Biochim Biophys Acta Mol Cell Biol Lipids. 2020 Jan;1865(1):158499. doi: 10.1016/j.bbalip.2019.07.008. Epub 2019 Jul 25.
7
ER Membrane Phospholipids and Surface Tension Control Cellular Lipid Droplet Formation.
Dev Cell. 2017 Jun 19;41(6):591-604.e7. doi: 10.1016/j.devcel.2017.05.012. Epub 2017 Jun 1.
8
Is fat so bad? Modulation of endoplasmic reticulum stress by lipid droplet formation.
Biol Cell. 2011 Jun;103(6):271-85. doi: 10.1042/BC20100144.
9
Lipid Droplet Nucleation.
Trends Cell Biol. 2021 Feb;31(2):108-118. doi: 10.1016/j.tcb.2020.11.006. Epub 2020 Dec 5.

引用本文的文献

1
Astrocyte Lipid Droplet Dynamics Orchestrate Neurological Disorders and Therapeutic Horizons.
Small Sci. 2025 Jun 8;5(9):2500152. doi: 10.1002/smsc.202500152. eCollection 2025 Sep.
2
Research progress on endoplasmic reticulum homeostasis in acute kidney injury.
Front Pharmacol. 2025 Jun 20;16:1595845. doi: 10.3389/fphar.2025.1595845. eCollection 2025.
4
Machine Learning Based Early Diagnosis of ADHD with SHAP Value Interpretation: A Retrospective Observational Study.
Neuropsychiatr Dis Treat. 2025 May 21;21:1075-1090. doi: 10.2147/NDT.S519492. eCollection 2025.
5
CSN-CRL Complexes: New Regulators of Adipogenesis.
Biomolecules. 2025 Mar 5;15(3):372. doi: 10.3390/biom15030372.
6
ATP11B Modulates Microglial Lipid Metabolism and Alleviates Alzheimer's Disease Pathology.
MedComm (2020). 2025 Mar 22;6(4):e70139. doi: 10.1002/mco2.70139. eCollection 2025 Apr.
9
Ramulus Mori (Sangzhi) alkaloids ameliorate high-fat diet induced obesity in rats by modulating gut microbiota and bile acid metabolism.
Front Endocrinol (Lausanne). 2024 Dec 20;15:1506430. doi: 10.3389/fendo.2024.1506430. eCollection 2024.
10
ER-LD Membrane Contact Sites: A Budding Area in the Pathogen Survival Strategy.
Contact (Thousand Oaks). 2024 Dec 18;7:25152564241304196. doi: 10.1177/25152564241304196. eCollection 2024 Jan-Dec.

本文引用的文献

1
Identification of two pathways mediating protein targeting from ER to lipid droplets.
Nat Cell Biol. 2022 Sep;24(9):1364-1377. doi: 10.1038/s41556-022-00974-0. Epub 2022 Sep 1.
3
Seipin forms a flexible cage at lipid droplet formation sites.
Nat Struct Mol Biol. 2022 Mar;29(3):194-202. doi: 10.1038/s41594-021-00718-y. Epub 2022 Feb 24.
4
The Lipid Droplet Knowledge Portal: A resource for systematic analyses of lipid droplet biology.
Dev Cell. 2022 Feb 7;57(3):387-397.e4. doi: 10.1016/j.devcel.2022.01.003.
5
Lipolysis: cellular mechanisms for lipid mobilization from fat stores.
Nat Metab. 2021 Nov;3(11):1445-1465. doi: 10.1038/s42255-021-00493-6. Epub 2021 Nov 19.
6
Mechanism of lipid droplet formation by the yeast Sei1/Ldb16 Seipin complex.
Nat Commun. 2021 Oct 8;12(1):5892. doi: 10.1038/s41467-021-26162-6.
7
The CYTOLD and ERTOLD pathways for lipid droplet-protein targeting.
Trends Biochem Sci. 2022 Jan;47(1):39-51. doi: 10.1016/j.tibs.2021.08.007. Epub 2021 Sep 25.
8
Molecular structures of human ACAT2 disclose mechanism for selective inhibition.
Structure. 2021 Dec 2;29(12):1410-1418.e4. doi: 10.1016/j.str.2021.07.009. Epub 2021 Sep 13.
9
Pex30-like proteins function as adaptors at distinct ER membrane contact sites.
J Cell Biol. 2021 Oct 4;220(10). doi: 10.1083/jcb.202103176. Epub 2021 Aug 17.
10
Highly accurate protein structure prediction for the human proteome.
Nature. 2021 Aug;596(7873):590-596. doi: 10.1038/s41586-021-03828-1. Epub 2021 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验