Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States.
Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.
Anal Chem. 2022 Sep 27;94(38):13243-13249. doi: 10.1021/acs.analchem.2c03061. Epub 2022 Sep 15.
Liposomes are emerging therapeutic formulations for site-specific delivery of chemotherapeutic drugs. The efficiency and selectivity of drug delivery by these carriers largely rely on their surface properties, shape, and size. There is a growing demand for analytical approaches that can be used for structural and morphological characterization of liposomes at the single-vesicle level. AFM-IR is a modern optical nanoscopic technique that combines the advantages of scanning probe microscopy and infrared spectroscopy. Our findings show that AFM-IR can be used to probe conformational changes in phospholipids that take place upon their assembly into liposomes. Such conclusions can be made based on the corresponding changes in intensities of the lipid vibrational bands as the molecules transition from a solid state into large unilamellar vesicles (LUVs). This spectroscopic analysis of LUV formation together with density functional theory calculations also reveals the extent to which the molecular conformation and local environment of the functional groups alter the AFM-IR spectra of phospholipids. Using melittin as a test protein, we also examined the extent to which LUVs can be used for protein internalization. We found that melittin enters LUVs nearly instantaneously, which protects it from possible structural modifications that are caused by a changing environment. This foundational work empowers AFM-IR analysis of liposomes and opens new avenues for determination of the molecular mechanisms of liposome-drug interactions.
脂质体是用于化疗药物靶向递药的新兴治疗制剂。这些载体的药物递药效率和选择性在很大程度上依赖于其表面特性、形状和大小。人们越来越需要能够在单囊泡水平上对脂质体进行结构和形态特征分析的方法。原子力显微镜-红外光谱(AFM-IR)是一种现代光学纳米技术,它结合了扫描探针显微镜和红外光谱的优势。我们的研究结果表明,AFM-IR 可用于探测磷脂在组装成脂质体时发生的构象变化。可以根据脂质振动带的强度相应变化得出这样的结论,即当分子从固态转变为大单室囊泡(LUV)时,这些分子会发生转变。这种对 LUV 形成的光谱分析以及密度泛函理论计算还揭示了分子构象和官能团的局部环境改变磷脂 AFM-IR 光谱的程度。使用蜂毒素作为测试蛋白,我们还研究了 LUV 用于蛋白内化的程度。我们发现蜂毒素几乎瞬间进入 LUV,从而保护它免受环境变化可能引起的结构修饰。这项基础工作为脂质体的 AFM-IR 分析提供了支持,并为确定脂质体-药物相互作用的分子机制开辟了新的途径。