Suppr超能文献

斑马鱼幼体作为脊髓再生模型的独特优势。

Unique advantages of zebrafish larvae as a model for spinal cord regeneration.

作者信息

Alper Samuel R, Dorsky Richard I

机构信息

Department of Neurobiology, University of Utah, Salt Lake City, UT, United States.

出版信息

Front Mol Neurosci. 2022 Sep 7;15:983336. doi: 10.3389/fnmol.2022.983336. eCollection 2022.

Abstract

The regenerative capacity of the spinal cord in mammals ends at birth. In contrast, teleost fish and amphibians retain this capacity throughout life, leading to the use of the powerful zebrafish model system to identify novel mechanisms that promote spinal cord regeneration. While adult zebrafish offer an effective comparison with non-regenerating mammals, they lack the complete array of experimental approaches that have made this animal model so successful. In contrast, the optical transparency, simple anatomy and complex behavior of zebrafish larvae, combined with the known conservation of pro-regenerative signals and cell types between larval and adult stages, suggest that they may hold even more promise as a system for investigating spinal cord regeneration. In this review, we highlight characteristics and advantages of the larval model that underlie its potential to provide future therapeutic approaches for treating human spinal cord injury.

摘要

哺乳动物脊髓的再生能力在出生时就终止了。相比之下,硬骨鱼和两栖动物终生都保留这种能力,这促使人们使用强大的斑马鱼模型系统来识别促进脊髓再生的新机制。虽然成年斑马鱼能与不能再生的哺乳动物进行有效对比,但它们缺乏那些使这个动物模型如此成功的完整实验方法。相反,斑马鱼幼体的光学透明性、简单的解剖结构和复杂的行为,再加上已知的幼体和成体阶段之间促再生信号和细胞类型的保守性,表明它们作为研究脊髓再生的系统可能更具前景。在这篇综述中,我们强调了幼体模型的特点和优势,这些特点和优势是其为人类脊髓损伤提供未来治疗方法的潜力的基础。

相似文献

1
Unique advantages of zebrafish larvae as a model for spinal cord regeneration.
Front Mol Neurosci. 2022 Sep 7;15:983336. doi: 10.3389/fnmol.2022.983336. eCollection 2022.
2
Mechanical Ablation of Larval Zebrafish Spinal Cord.
Methods Mol Biol. 2024;2746:47-56. doi: 10.1007/978-1-0716-3585-8_3.
3
Cellular Dynamics during Spinal Cord Regeneration in Larval Zebrafish.
Dev Neurosci. 2019;41(1-2):112-122. doi: 10.1159/000500185. Epub 2019 Aug 7.
4
Spinal cord transection in the larval zebrafish.
J Vis Exp. 2014 May 21(87):51479. doi: 10.3791/51479.
5
Know How to Regrow-Axon Regeneration in the Zebrafish Spinal Cord.
Cells. 2021 Jun 6;10(6):1404. doi: 10.3390/cells10061404.
6
Differential Roles of Diet on Development and Spinal Cord Regeneration in Larval Zebrafish.
Zebrafish. 2024 Apr;21(2):214-222. doi: 10.1089/zeb.2023.0042.
7
Mechanical spinal cord transection in larval zebrafish and subsequent whole-mount histological processing.
STAR Protoc. 2022 Jan 17;3(1):101093. doi: 10.1016/j.xpro.2021.101093. eCollection 2022 Mar 18.
8
Localized EMT reprograms glial progenitors to promote spinal cord repair.
Dev Cell. 2021 Mar 8;56(5):613-626.e7. doi: 10.1016/j.devcel.2021.01.017. Epub 2021 Feb 19.
10
Syntenin-a promotes spinal cord regeneration following injury in adult zebrafish.
Eur J Neurosci. 2013 Jul;38(2):2280-9. doi: 10.1111/ejn.12222. Epub 2013 Apr 22.

引用本文的文献

1
Temperature and photoperiod stress in zebrafish larvae: impacts on development, gene regulation and PGC migration.
Fish Physiol Biochem. 2025 Sep 3;51(5):156. doi: 10.1007/s10695-025-01568-x.
2
Mechanisms underpinning spontaneous spinal cord regeneration.
Development. 2025 Oct 15;152(20). doi: 10.1242/dev.204790. Epub 2025 Jul 30.
3
Effects of age on the response to spinal cord injury: optimizing the larval zebrafish model.
Dev Biol. 2025 Jul 3;526:111-127. doi: 10.1016/j.ydbio.2025.07.003.
4
Blueprints for healing: central nervous system regeneration in zebrafish and neonatal mice.
BMC Biol. 2025 Apr 30;23(1):115. doi: 10.1186/s12915-025-02203-0.
5
A robust paradigm for studying regeneration after traumatic spinal cord injury in zebrafish.
J Neurosci Methods. 2024 Oct;410:110243. doi: 10.1016/j.jneumeth.2024.110243. Epub 2024 Aug 6.
6
7
Differential Roles of Diet on Development and Spinal Cord Regeneration in Larval Zebrafish.
Zebrafish. 2024 Apr;21(2):214-222. doi: 10.1089/zeb.2023.0042.
8
Mechanical Ablation of Larval Zebrafish Spinal Cord.
Methods Mol Biol. 2024;2746:47-56. doi: 10.1007/978-1-0716-3585-8_3.
9
In toto imaging of glial JNK signaling during larval zebrafish spinal cord regeneration.
Development. 2023 Dec 15;150(24). doi: 10.1242/dev.202076. Epub 2023 Dec 11.

本文引用的文献

1
Regenerative neurogenesis: the integration of developmental, physiological and immune signals.
Development. 2022 Apr 15;149(8). doi: 10.1242/dev.199907. Epub 2022 May 3.
2
Transformation of an early-established motor circuit during maturation in zebrafish.
Cell Rep. 2022 Apr 12;39(2):110654. doi: 10.1016/j.celrep.2022.110654.
3
Central nervous system regeneration.
Cell. 2022 Jan 6;185(1):77-94. doi: 10.1016/j.cell.2021.10.029.
4
FGF binding protein 3 is required for spinal cord motor neuron development and regeneration in zebrafish.
Exp Neurol. 2022 Feb;348:113944. doi: 10.1016/j.expneurol.2021.113944. Epub 2021 Dec 9.
7
Met is required for oligodendrocyte progenitor cell migration in Danio rerio.
G3 (Bethesda). 2021 Sep 27;11(10). doi: 10.1093/g3journal/jkab265.
8
Decoding the proregenerative competence of regulatory T cells through complex tissue regeneration in zebrafish.
Clin Exp Immunol. 2021 Dec;206(3):346-353. doi: 10.1111/cei.13661. Epub 2021 Oct 14.
9
RNA-induced inflammation and migration of precursor neurons initiates neuronal circuit regeneration in zebrafish.
Dev Cell. 2021 Aug 23;56(16):2364-2380.e8. doi: 10.1016/j.devcel.2021.07.021.
10
MIC-Drop: A platform for large-scale in vivo CRISPR screens.
Science. 2021 Sep 3;373(6559):1146-1151. doi: 10.1126/science.abi8870. Epub 2021 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验