Suppr超能文献

城市内环境一氧化碳浓度的变化:在时空建模框架中利用低成本监测器。

Within-City Variation in Ambient Carbon Monoxide Concentrations: Leveraging Low-Cost Monitors in a Spatiotemporal Modeling Framework.

机构信息

Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA.

Department of Biostatistics, University of Washington, Seattle, Washington, USA.

出版信息

Environ Health Perspect. 2022 Sep;130(9):97008. doi: 10.1289/EHP10889. Epub 2022 Sep 28.

Abstract

BACKGROUND

Based on human and animal experimental studies, exposure to ambient carbon monoxide (CO) may be associated with cardiovascular disease outcomes, but epidemiological evidence of this link is limited. The number and distribution of ground-level regulatory agency monitors are insufficient to characterize fine-scale variations in CO concentrations.

OBJECTIVES

To develop a daily, high-resolution ambient CO exposure prediction model at the city scale.

METHODS

We developed a CO prediction model in Baltimore, Maryland, based on a spatiotemporal statistical algorithm with regulatory agency monitoring data and measurements from calibrated low-cost gas monitors. We also evaluated the contribution of three novel parameters to model performance: high-resolution meteorological data, satellite remote sensing data, and copollutant (, , and ) concentrations.

RESULTS

The CO model had spatial cross-validation (CV) and root-mean-square error (RMSE) of (ppm), respectively; the model had temporal CV and RMSE of 0.61 and , respectively. The predictions revealed spatially resolved CO hot spots associated with population, traffic, and other nonroad emission sources (e.g., railroads and airport), as well as sharp concentration decreases within short distances from primary roads.

DISCUSSION

The three novel parameters did not substantially improve model performance, suggesting that, on its own, our spatiotemporal modeling framework based on geographic features was reliable and robust. As low-cost air monitors become increasingly available, this approach to CO concentration modeling can be generalized to resource-restricted environments to facilitate comprehensive epidemiological research. https://doi.org/10.1289/EHP10889.

摘要

背景

基于人体和动物实验研究,环境一氧化碳(CO)暴露可能与心血管疾病结局有关,但这一关联的流行病学证据有限。地面监管机构监测器的数量和分布不足以描述 CO 浓度的细粒度变化。

目的

开发一种城市尺度的每日高分辨率环境 CO 暴露预测模型。

方法

我们在马里兰州巴尔的摩市开发了一种 CO 预测模型,该模型基于时空统计算法,结合监管机构监测数据和经过校准的低成本气体监测器测量数据。我们还评估了三个新参数对模型性能的贡献:高分辨率气象数据、卫星遥感数据和共污染物( 、 和 )浓度。

结果

CO 模型的空间交叉验证(CV)和均方根误差(RMSE)分别为 (ppm);模型的时间 CV 和 RMSE 分别为 0.61 和 。预测结果揭示了与人口、交通和其他非道路排放源(如铁路和机场)相关的 CO 热点以及从主要道路短距离内浓度急剧下降的热点。

讨论

这三个新参数并没有显著提高模型性能,这表明仅依靠我们基于地理特征的时空建模框架是可靠和稳健的。随着低成本空气监测器的日益普及,这种 CO 浓度建模方法可以推广到资源有限的环境中,以促进全面的流行病学研究。https://doi.org/10.1289/EHP10889.

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd28/9518741/c269bb2e29f5/ehp10889_f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验