Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands.
Gene. 2023 Jan 30;851:146928. doi: 10.1016/j.gene.2022.146928. Epub 2022 Sep 30.
Bone formation is controlled by histone modifying enzymes that regulate post-translational modifications on nucleosomal histone proteins and control accessibility of transcription factors to gene promoters required for osteogenesis. Enhancer of Zeste homolog 2 (EZH2/Ezh2), a histone H3 lysine 27 (H3K27) methyl transferase, is a suppressor of osteoblast differentiation. Ezh2 is regulated by SET and MYND domain-containing protein 2 (SMYD2/Smyd2), a lysine methyltransferase that modifies both histone and non-histone proteins. Here, we examined whether Smyd2 modulates Ezh2 suppression of osteoblast differentiation. Musculoskeletal RNA-seq data show that SMYD2/Smyd2 is the most highly expressed SMYD/Smyd member in human bone tissues and mouse osteoblasts. Smyd2 loss of function analysis in mouse MC3T3 osteoblasts using siRNA depletion enhances proliferation and calcium deposition. Loss of Smyd2 protein does not affect alkaline phosphatase activity nor does it result in a unified expression response for standard osteoblast-related mRNA markers (e.g., Bglap, Ibsp, Spp1, Sp7), indicating that Smyd2 does not directly control osteoblast differentiation. Smyd2 protein depletion enhances levels of the osteo-suppressive Ezh2 protein and H3K27 trimethylation (H3K27me3), as expected from increased cell proliferation, while elevating the osteo-inductive Runx2 protein. Combined siRNA depletion of both Smyd2 and Ezh2 protein is more effective in promoting calcium deposition when compared to loss of either protein. Collectively, our results indicate that Smyd2 inhibits proliferation and indirectly the subsequent mineral deposition by osteoblasts. Mechanistically, Smyd2 represents a functional epigenetic regulator that operates in parallel to the suppressive effects of Ezh2 and H3K27 trimethylation on osteoblast differentiation.
骨形成受组蛋白修饰酶控制,这些酶调节核小体组蛋白蛋白的翻译后修饰,并控制转录因子对成骨所需基因启动子的可及性。EZH2 是一种组蛋白 H3 赖氨酸 27(H3K27)甲基转移酶,是成骨细胞分化的抑制因子。Ezh2 受 SET 和 MYND 结构域包含蛋白 2(SMYD2/Smyd2)调节,SMYD2/Smyd2 是一种赖氨酸甲基转移酶,可修饰组蛋白和非组蛋白蛋白。在这里,我们研究了 Smyd2 是否调节 Ezh2 抑制成骨细胞分化。肌肉骨骼 RNA-seq 数据显示,SMYD2/Smyd2 是人类骨骼组织和小鼠成骨细胞中表达最高的 SMYD/Smyd 成员。用 siRNA 耗竭法在小鼠 MC3T3 成骨细胞中进行 Smyd2 功能丧失分析可增强增殖和钙沉积。Smyd2 蛋白缺失不会影响碱性磷酸酶活性,也不会导致标准成骨相关 mRNA 标志物(如 Bglap、Ibsp、Spp1、Sp7)的统一表达反应,这表明 Smyd2 不会直接控制成骨细胞分化。Smyd2 蛋白耗竭可增强骨抑制性 Ezh2 蛋白和 H3K27 三甲基化(H3K27me3)的水平,这与细胞增殖增加相符,同时还可提高成骨诱导性 Runx2 蛋白的水平。与单独缺失任何一种蛋白相比,联合使用 Smyd2 和 Ezh2 蛋白的 siRNA 耗竭更有效地促进钙沉积。总的来说,我们的结果表明 Smyd2 通过抑制增殖并间接抑制成骨细胞随后的矿化。从机制上讲,Smyd2 代表一种功能性表观遗传调节剂,与 Ezh2 和 H3K27 三甲基化对成骨细胞分化的抑制作用平行运作。