Suppr超能文献

一项关于孕妇对人工智能在临床护理中实施的看法的调查。

A survey of pregnant patients' perspectives on the implementation of artificial intelligence in clinical care.

机构信息

Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

David Geffen School of Medicine at UCLA, Los Angeles, California, USA.

出版信息

J Am Med Inform Assoc. 2022 Dec 13;30(1):46-53. doi: 10.1093/jamia/ocac200.

Abstract

OBJECTIVE

To evaluate and understand pregnant patients' perspectives on the implementation of artificial intelligence (AI) in clinical care with a focus on opportunities to improve healthcare technologies and healthcare delivery.

MATERIALS AND METHODS

We developed an anonymous survey and enrolled patients presenting to the labor and delivery unit at a tertiary care center September 2019-June 2020. We investigated the role and interplay of patient demographic factors, healthcare literacy, understanding of AI, comfort levels with various AI scenarios, and preferences for AI use in clinical care.

RESULTS

Of the 349 parturients, 57.6% were between the ages of 25-34 years, 90.1% reported college or graduate education and 69.2% believed the benefits of AI use in clinical care outweighed the risks. Cluster analysis revealed 2 distinct groups: patients more comfortable with clinical AI use (Pro-AI) and those who preferred physician presence (AI-Cautious). Pro-AI patients had a higher degree of education, were more knowledgeable about AI use in their daily lives and saw AI use as a significant advancement in medicine. AI-Cautious patients reported a lack of human qualities and low trust in the technology as detriments to AI use.

DISCUSSION

Patient trust and the preservation of the human physician-patient relationship are critical in moving forward with AI implementation in healthcare. Pregnant individuals are cautiously optimistic about AI use in their care.

CONCLUSION

Our findings provide insights into the status of AI use in perinatal care and provide a platform for driving patient-centered innovations.

摘要

目的

评估和了解孕妇对人工智能(AI)在临床护理中应用的看法,重点是改善医疗技术和医疗服务的机会。

材料与方法

我们开发了一份匿名调查问卷,并于 2019 年 9 月至 2020 年 6 月期间在一家三级护理中心招募了前来分娩单元就诊的患者。我们调查了患者人口统计学因素、医疗保健知识水平、对 AI 的理解、对各种 AI 场景的舒适度以及对 AI 在临床护理中应用的偏好等因素在 AI 应用中的作用和相互作用。

结果

在 349 名产妇中,57.6%的年龄在 25-34 岁之间,90.1%的人报告受过大学或研究生教育,69.2%的人认为 AI 在临床护理中的应用益处大于风险。聚类分析显示了 2 个截然不同的群体:更愿意接受临床 AI 应用的患者(支持 AI)和更喜欢医生在场的患者(对 AI 持谨慎态度)。支持 AI 的患者受教育程度更高,更了解 AI 在日常生活中的应用,并且认为 AI 的应用是医学的重大进步。对 AI 持谨慎态度的患者则认为 AI 缺乏人性和对技术的低信任是 AI 应用的弊端。

讨论

患者信任和保护医患关系在推进医疗保健中 AI 应用方面至关重要。孕妇对 AI 在其护理中的应用持谨慎乐观的态度。

结论

我们的研究结果提供了有关 AI 在围产期护理中应用的现状,并为推动以患者为中心的创新提供了平台。

相似文献

1
A survey of pregnant patients' perspectives on the implementation of artificial intelligence in clinical care.
J Am Med Inform Assoc. 2022 Dec 13;30(1):46-53. doi: 10.1093/jamia/ocac200.
8
Exploring perceptions of healthcare technologies enabled by artificial intelligence: an online, scenario-based survey.
BMC Med Inform Decis Mak. 2021 Jul 20;21(1):221. doi: 10.1186/s12911-021-01586-8.
9
Western Australian medical students' attitudes towards artificial intelligence in healthcare.
PLoS One. 2023 Aug 31;18(8):e0290642. doi: 10.1371/journal.pone.0290642. eCollection 2023.
10
Patient Perspectives on AI for Mental Health Care: Cross-Sectional Survey Study.
JMIR Ment Health. 2024 Sep 18;11:e58462. doi: 10.2196/58462.

引用本文的文献

1
Multinational Attitudes Toward AI in Health Care and Diagnostics Among Hospital Patients.
JAMA Netw Open. 2025 Jun 2;8(6):e2514452. doi: 10.1001/jamanetworkopen.2025.14452.
4
A Theoretical Exploration of Artificial Intelligence's Impact on Feto-Maternal Health from Conception to Delivery.
Int J Womens Health. 2024 May 22;16:903-915. doi: 10.2147/IJWH.S454127. eCollection 2024.
5
Public perspectives on the use of different data types for prediction in healthcare.
J Am Med Inform Assoc. 2024 Apr 3;31(4):893-900. doi: 10.1093/jamia/ocae009.
6
On the Horizon: Specific Applications of Automation and Artificial Intelligence in Anesthesiology.
Curr Anesthesiol Rep. 2023 Jun;13(2):31-40. doi: 10.1007/s40140-023-00558-0. Epub 2023 Apr 6.
7
Deep hybrid model for maternal health risk classification in pregnancy: synergy of ANN and random forest.
Front Artif Intell. 2023 Jul 5;6:1213436. doi: 10.3389/frai.2023.1213436. eCollection 2023.
8
Women's perspectives on the use of artificial intelligence (AI)-based technologies in mental healthcare.
JAMIA Open. 2023 Jul 8;6(3):ooad048. doi: 10.1093/jamiaopen/ooad048. eCollection 2023 Oct.

本文引用的文献

2
Defining AMIA's artificial intelligence principles.
J Am Med Inform Assoc. 2022 Mar 15;29(4):585-591. doi: 10.1093/jamia/ocac006.
3
A healthy debate: Exploring the views of medical doctors on the ethics of artificial intelligence.
Artif Intell Med. 2021 Nov;121:102190. doi: 10.1016/j.artmed.2021.102190. Epub 2021 Oct 12.
6
Involving Pregnant Individuals in Clinical Research on COVID-19 Vaccines.
JAMA. 2021 Mar 16;325(11):1041-1042. doi: 10.1001/jama.2021.1865.
8
The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database.
NPJ Digit Med. 2020 Sep 11;3:118. doi: 10.1038/s41746-020-00324-0. eCollection 2020.
9
An Insulin Bolus Advisor for Type 1 Diabetes Using Deep Reinforcement Learning.
Sensors (Basel). 2020 Sep 6;20(18):5058. doi: 10.3390/s20185058.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验