Suppr超能文献

Gokushovirus ΦEC6098 的冷冻电镜结构揭示了一种新型的单支架蛋白、微病毒组装系统的衣壳结构。

Cryo-EM Structure of Gokushovirus ΦEC6098 Reveals a Novel Capsid Architecture for a Single-Scaffolding Protein, Microvirus Assembly System.

机构信息

Department of Biochemistry and Molecular Biology, Pennsylvania State Universitygrid.29857.31, University Park, Pennsylvania, USA.

Huck Institute of the Life Sciences, Pennsylvania State Universitygrid.29857.31, University Park, Pennsylvania, USA.

出版信息

J Virol. 2022 Nov 9;96(21):e0099022. doi: 10.1128/jvi.00990-22. Epub 2022 Oct 18.

Abstract

Ubiquitous and abundant in ecosystems and microbiomes, gokushoviruses constitute a subfamily, distantly related to bacteriophages ΦX174, α3, and G4. A high-resolution cryo-EM structure of gokushovirus ΦEC6098 was determined, and the atomic model was built . Although gokushoviruses lack external scaffolding and spike proteins, which extensively interact with the ΦX174 capsid protein, the core of the ΦEC6098 coat protein (VP1) displayed a similar structure. There are, however, key differences. At each ΦEC6098 icosahedral 3-fold axis, a long insertion loop formed mushroom-like protrusions, which have been noted in lower-resolution gokushovirus structures. Hydrophobic interfaces at the bottom of these protrusions may confer stability to the capsid shell. In ΦX174, the N-terminus of the capsid protein resides directly atop the 3-fold axes of symmetry; however, the ΦEC6098 N-terminus stretched across the inner surface of the capsid shell, reaching nearly to the 5-fold axis of the neighboring pentamer. Thus, this extended N-terminus interconnected pentamers on the inside of the capsid shell, presumably promoting capsid assembly, a function performed by the ΦX174 external scaffolding protein. There were also key differences between the ΦX174-like DNA-binding J proteins and its ΦEC6098 homologue VP8. As seen with the J proteins, C-terminal VP8 residues were bound into a pocket within the major capsid protein; however, its N-terminal residues were disordered, likely due to flexibility. We show that the combined location and interaction of VP8's C-terminus and a portion of VP1's N-terminus are reminiscent of those seen with the ΦX174 and α3 J proteins. There is a dramatic structural and morphogenetic divide within the . The well-studied ΦX174-like viruses have prominent spikes at their icosahedral vertices, which are absent in gokushoviruses. Instead, gokushovirus major coat proteins form extensive mushroom-like protrusions at the 3-fold axes of symmetry. In addition, gokushoviruses lack an external scaffolding protein, the more critical of the two ΦX174 assembly proteins, but retain an internal scaffolding protein. The ΦEC6098 virion suggests that key external scaffolding functions are likely performed by coat protein domains unique to gokushoviruses. Thus, within one family, different assembly paths have been taken, demonstrating how a two-scaffolding protein system can evolve into a one-scaffolding protein system, or vice versa.

摘要

在生态系统和微生物组中普遍存在且丰富的噬菌体 Gokushoviruses 构成了一个亚科,与噬菌体 ΦX174、α3 和 G4 有较远的亲缘关系。我们确定了噬菌体 Gokushovirus ΦEC6098 的高分辨率冷冻电镜结构,并构建了原子模型。虽然噬菌体 Gokushoviruses 缺乏与 ΦX174 衣壳蛋白广泛相互作用的外部支架和刺突蛋白,但 ΦEC6098 衣壳蛋白(VP1)的核心显示出类似的结构。然而,存在一些关键差异。在每个 ΦEC6098 二十面体 3 倍轴上,一个长的插入环形成蘑菇状突起,在较低分辨率的噬菌体 Gokushovirus 结构中已经注意到了这些突起。这些突起底部的疏水界面可能赋予衣壳壳稳定性。在 ΦX174 中,衣壳蛋白的 N 端直接位于对称的 3 倍轴上;然而,ΦEC6098 的 N 端延伸穿过衣壳壳的内表面,几乎延伸到相邻五聚体的 5 倍轴。因此,这种延伸的 N 端在衣壳壳的内部相互连接五聚体,可能促进衣壳组装,这是由 ΦX174 外部支架蛋白执行的功能。ΦX174 样 DNA 结合 J 蛋白与其 ΦEC6098 同源物 VP8 之间也存在关键差异。与 J 蛋白一样,C 端 VP8 残基被结合到主要衣壳蛋白内的一个口袋中;然而,其 N 端残基无序,可能是由于灵活性。我们表明,VP8 的 C 端和 VP1 的 N 端一部分的组合位置和相互作用类似于 ΦX174 和 α3 J 蛋白的作用。在. 中存在着显著的结构和形态发生的划分。研究充分的 ΦX174 样病毒在其二十面体顶点具有明显的刺突,而在 Gokushoviruses 中则没有。相反,Gokushovirus 主要衣壳蛋白在 3 倍轴的对称点形成广泛的蘑菇状突起。此外,Gokushoviruses 缺乏外部支架蛋白,这是两个 ΦX174 组装蛋白中更关键的一个,但保留了内部支架蛋白。ΦEC6098 病毒粒子表明,关键的外部支架功能可能由 Gokushoviruses 特有的衣壳蛋白结构域执行。因此,在一个家族中,采取了不同的组装途径,表明具有两个支架蛋白系统的病毒如何演变成具有一个支架蛋白系统,或者反之亦然。

相似文献

2
Structural studies of bacteriophage alpha3 assembly.
J Mol Biol. 2003 Jan 3;325(1):11-24. doi: 10.1016/s0022-2836(02)01201-9.
4
The microviridae: Diversity, assembly, and experimental evolution.
Virology. 2016 Apr;491:45-55. doi: 10.1016/j.virol.2016.01.020. Epub 2016 Feb 11.
6
The Structure of : Exploring the Capsid Diversity of the .
Viruses. 2024 Jul 9;16(7):1103. doi: 10.3390/v16071103.
8
Chlamydiaphage Chp2, a skeleton in the phiX174 closet: scaffolding protein and procapsid identification.
J Bacteriol. 2004 Nov;186(22):7571-4. doi: 10.1128/JB.186.22.7571-7574.2004.
9
Structural basis for scaffolding-mediated assembly and maturation of a dsDNA virus.
Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1355-60. doi: 10.1073/pnas.1015739108. Epub 2011 Jan 10.
10
Internal Proteins of the Procapsid and Mature Capsids of Herpes Simplex Virus 1 Mapped by Bubblegram Imaging.
J Virol. 2016 Apr 29;90(10):5176-86. doi: 10.1128/JVI.03224-15. Print 2016 May 15.

引用本文的文献

1
Structural basis for Salmonella infection by two Microviridae phages.
Commun Biol. 2025 Aug 6;8(1):1166. doi: 10.1038/s42003-025-08595-7.
3
Structural Capsidomics of Single-Stranded DNA Viruses.
Viruses. 2025 Feb 27;17(3):333. doi: 10.3390/v17030333.
4
Penton blooming, a conserved mechanism of genome delivery used by disparate microviruses.
mBio. 2025 Apr 9;16(4):e0371324. doi: 10.1128/mbio.03713-24. Epub 2025 Mar 19.
5
The Structure of : Exploring the Capsid Diversity of the .
Viruses. 2024 Jul 9;16(7):1103. doi: 10.3390/v16071103.
6
A stargate mechanism of genome delivery unveiled by cryogenic electron tomography.
bioRxiv. 2024 Jun 11:2024.06.11.598214. doi: 10.1101/2024.06.11.598214.

本文引用的文献

1
Organizing the Global Diversity of Microviruses.
mBio. 2022 Jun 28;13(3):e0058822. doi: 10.1128/mbio.00588-22. Epub 2022 May 2.
2
Adaptation of the polony technique to quantify Gokushovirinae, a diverse group of single-stranded DNA phage.
Environ Microbiol. 2021 Nov;23(11):6622-6636. doi: 10.1111/1462-2920.15805. Epub 2021 Oct 18.
3
DeepEMhancer: a deep learning solution for cryo-EM volume post-processing.
Commun Biol. 2021 Jul 15;4(1):874. doi: 10.1038/s42003-021-02399-1.
4
Defensive hypervariable regions confer superinfection exclusion in microviruses.
Proc Natl Acad Sci U S A. 2021 Jul 13;118(28). doi: 10.1073/pnas.2102786118.
6
UCSF ChimeraX: Structure visualization for researchers, educators, and developers.
Protein Sci. 2021 Jan;30(1):70-82. doi: 10.1002/pro.3943. Epub 2020 Oct 22.
7
Mutagenic Analysis of a DNA Translocating Tube's Interior Surface.
Viruses. 2020 Jun 22;12(6):670. doi: 10.3390/v12060670.
8
Resurrection of a global, metagenomically defined gokushovirus.
Elife. 2020 Feb 26;9:e51599. doi: 10.7554/eLife.51599.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验