Paulo Daniel F, Cha Alex Y, Kauwe Angela N, Curbelo Keena, Corpuz Renee L, Simmonds Tyler J, Sim Sheina B, Geib Scott M
Department of Plant and Environmental Protection Sciences (PEPS), The University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.
U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center (PBARC), Hilo, HI, 96720, USA.
J Econ Entomol. 2022 Dec 14;115(6):2110-2115. doi: 10.1093/jee/toac166.
Tephritid fruit flies are among the most invasive and destructive agricultural pests worldwide. Over recent years, many studies have implemented the CRISPR/Cas9 genome-editing technology to dissect gene functions in tephritids and create new strains to facilitate their genetics, management, and control. This growing literature allows us to compare diverse strategies for delivering CRISPR/Cas9 components into tephritid embryos, optimize procedures, and advance the technology to systems outside the most thoroughly studied species within the family. Here, we revisit five years of CRISPR research in Tephritidae and propose a unified protocol for candidate gene knockout in fruit flies using CRISPR/Cas9. We demonstrated the efficiency of our protocol by disrupting the eye pigmentation gene white eye (we) in the melon fly, Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae). High rates of somatic and germline mutagenesis were induced by microinjecting pre-assembled Cas9-sgRNA complexes through the chorion of embryos at early embryogenesis, leading to the rapid development of new mutant lines. We achieved comparable results when targeting the we orthologue in the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), illustrating the reliability of our methods when transferred to other related species. Finally, we functionally validated the recently discovered white pupae (wp) loci in the melon fly, successfully recreating the white puparium phenotype used in suppression programs of this and other major economically important tephritids. This is the first demonstration of CRISPR-based genome-editing in the genus Zeugodacus, and we anticipate that the procedures described here will contribute to advancing genome-editing in other non-model tephritid fruit flies.
实蝇科果蝇是全球最具入侵性和破坏性的农业害虫之一。近年来,许多研究采用了CRISPR/Cas9基因组编辑技术来剖析实蝇科果蝇的基因功能,并创建新的品系,以促进其实验遗传学研究、管理和控制。这些不断增加的文献使我们能够比较将CRISPR/Cas9组件导入实蝇科果蝇胚胎的不同策略,优化实验程序,并将该技术推广到该科中研究最深入的物种之外的其他系统。在这里,我们回顾了实蝇科五年的CRISPR研究,并提出了一种使用CRISPR/Cas9在果蝇中敲除候选基因的统一方案。我们通过破坏瓜实蝇(Zeugodacus cucurbitae (Coquillett),双翅目:实蝇科)的眼色素沉着基因白眼(we),证明了我们方案的有效性。在胚胎发育早期,通过将预组装的Cas9-sgRNA复合物微注射穿过胚胎的卵壳,诱导了高频率的体细胞和生殖系诱变,从而快速培育出新的突变品系。当在东方果实蝇(Bactrocera dorsalis (Hendel),双翅目:实蝇科)中靶向we同源基因时,我们也取得了类似的结果,这说明了我们的方法转移到其他相关物种时的可靠性。最后,我们在功能上验证了瓜实蝇中最近发现的白蛹(wp)基因座,成功重现了该实蝇及其他主要经济重要性实蝇抑制计划中使用的白色蛹壳表型。这是在果实蝇属中首次基于CRISPR的基因组编辑示范,我们预计这里描述的程序将有助于推进其他非模式实蝇科果蝇的基因组编辑。