Kashyap Varchaswal, Pandikassala Ajmal, Singla Gourav, Khan Tuhin Suvra, Ali Haider M, Vinod C P, Kurungot Sreekumar
Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 41108, India.
Academy of Scientific and Innovative Research, Postal Staff College Area, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh-201002, India.
Nanoscale. 2022 Nov 3;14(42):15928-15941. doi: 10.1039/d2nr04170g.
Cobalt and iron metal-based oxide catalysts play a significant role in energy devices. To unravel some interesting parameters, we have synthesized metal oxides of cobalt and iron ( FeO, CoO, CoFeO and CoFeO), and measured the effect of the valence band structure, morphology, size and defects in the nanoparticles towards the electrocatalytic hydrogen evolution reaction (HER), the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). The compositional variations in the cobalt and iron precursors significantly alter the particle size from 60 to <10 nm and simultaneously the shape of the particles (cubic and spherical). The Tauc plot obtained from the solution phase ultraviolet (UV) spectra of the nanoparticles showed band gaps of 2.2, 2.3, 2.5 and 2.8 eV for FeO, CoO, CoFeO and CoFeO, respectively. Further, the valence band structure and work function analysis using ultraviolet photoelectron spectroscopy (UPS) and core level X-ray photoelectron spectroscopy (XPS) analyses provided better structural insight into metal oxide catalysts. In the CoO system, the valence band structure favors the HER and FeO favors the OER. The composites CoFeO and CoFeO show a significant change in their core level (O 1s, Co 2p and Fe 2p spectra) and valence band structure. CoO shows an overpotential of 370 mV against 416 mV for FeO at a current density of 2 mA cm for the HER. Similarly, FeO shows an overpotential of 410 mV against the 435 mV for CoO at a current density of 10 mA cm for the OER. However, for the ORR, CoO shows 70 mV improvement in the half-wave potential against FeO. The composites (CoFeO and CoFeO) display better performance compared to their respective parent oxide systems (, CoO and FeO, respectively) in terms of the ORR half-wave potential, which can be attributed to the presence of the oxygen vacancies over the surface in these systems. This was further corroborated in density functional theory (DFT) simulations, wherein the oxygen vacancy formation on the surface of CoFeO(001) was calculated to be significantly lower (∼50 kJ mol) compared to CoO (001). The band diagram of the nanoparticles constructed from the various spectroscopic measurements with work function and band gap provides in-depth understanding of the electrocatalytic process.
钴和铁基金属氧化物催化剂在能量装置中发挥着重要作用。为了揭示一些有趣的参数,我们合成了钴和铁的金属氧化物(FeO、CoO、CoFeO和CoFeO),并测量了纳米颗粒中的价带结构、形态、尺寸和缺陷对析氢反应(HER)、析氧反应(OER)和氧还原反应(ORR)的影响。钴和铁前驱体的成分变化显著改变了颗粒尺寸,从60纳米减小到小于10纳米,同时也改变了颗粒形状(立方和球形)。从纳米颗粒的溶液相紫外(UV)光谱获得的Tauc图显示,FeO、CoO、CoFeO和CoFeO的带隙分别为2.2、2.3、2.5和2.8电子伏特。此外,使用紫外光电子能谱(UPS)和芯能级X射线光电子能谱(XPS)分析进行的价带结构和功函数分析,为金属氧化物催化剂提供了更好的结构洞察。在CoO体系中,价带结构有利于HER,而FeO有利于OER。复合材料CoFeO和CoFeO在其芯能级(O 1s、Co 2p和Fe 2p光谱)和价带结构上显示出显著变化。对于HER,在电流密度为2 mA cm时,CoO的过电位为370 mV,而FeO为416 mV。同样,对于OER,在电流密度为10 mA cm时,FeO的过电位为410 mV,而CoO为435 mV。然而,对于ORR,CoO的半波电位比FeO提高了70 mV。在ORR半波电位方面,复合材料(CoFeO和CoFeO)与其各自的母体氧化物体系(分别为CoO和FeO)相比表现出更好的性能,这可归因于这些体系表面存在氧空位。密度泛函理论(DFT)模拟进一步证实了这一点,其中计算得出CoFeO(001)表面的氧空位形成能比CoO(001)显著更低(约50 kJ mol)。由各种光谱测量以及功函数和带隙构建的纳米颗粒能带图,提供了对电催化过程的深入理解。