Suppr超能文献

CODA:用于细胞分辨率的大型组织的定量 3D 重建。

CODA: quantitative 3D reconstruction of large tissues at cellular resolution.

机构信息

Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA.

Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.

出版信息

Nat Methods. 2022 Nov;19(11):1490-1499. doi: 10.1038/s41592-022-01650-9. Epub 2022 Oct 24.

Abstract

A central challenge in biology is obtaining high-content, high-resolution information while analyzing tissue samples at volumes relevant to disease progression. We address this here with CODA, a method to reconstruct exceptionally large (up to multicentimeter cubed) tissues at subcellular resolution using serially sectioned hematoxylin and eosin-stained tissue sections. Here we demonstrate CODA's ability to reconstruct three-dimensional (3D) distinct microanatomical structures in pancreas, skin, lung and liver tissues. CODA allows creation of readily quantifiable tissue volumes amenable to biological research. As a testbed, we assess the microanatomy of the human pancreas during tumorigenesis within the branching pancreatic ductal system, labeling ten distinct structures to examine heterogeneity and structural transformation during neoplastic progression. We show that pancreatic precancerous lesions develop into distinct 3D morphological phenotypes and that pancreatic cancer tends to spread far from the bulk tumor along collagen fibers that are highly aligned to the 3D curves of ductal, lobular, vascular and neural structures. Thus, CODA establishes a means to transform broadly the structural study of human diseases through exploration of exhaustively labeled 3D microarchitecture.

摘要

生物学的一个核心挑战是在分析与疾病进展相关的组织样本时,获取高含量、高分辨率的信息。我们在这里使用 CODA 解决了这个问题,这是一种使用连续切片的苏木精和伊红染色组织切片以亚细胞分辨率重建异常大(高达立方厘米级)组织的方法。在这里,我们展示了 CODA 重建胰腺、皮肤、肺和肝脏组织中三维(3D)不同微观解剖结构的能力。CODA 允许创建易于量化的组织体积,适用于生物学研究。作为一个测试平台,我们评估了分支胰腺导管系统中肿瘤发生过程中人类胰腺的微观解剖结构,标记了十个不同的结构,以检查在肿瘤进展过程中的异质性和结构转化。我们表明,胰腺癌前病变发展成独特的 3D 形态表型,并且胰腺癌往往沿着与导管、小叶、血管和神经结构的 3D 曲线高度对齐的胶原纤维远离肿瘤主体扩散。因此,CODA 通过探索详尽标记的 3D 微观结构,为广泛探索人类疾病的结构研究提供了一种手段。

相似文献

1
CODA: quantitative 3D reconstruction of large tissues at cellular resolution.
Nat Methods. 2022 Nov;19(11):1490-1499. doi: 10.1038/s41592-022-01650-9. Epub 2022 Oct 24.
3
A "Clearer" View of Pancreatic Pathology: A Review of Tissue Clearing and Advanced Microscopy Techniques.
Adv Anat Pathol. 2019 Jan;26(1):31-39. doi: 10.1097/PAP.0000000000000215.
4
A Study of the Growth Patterns of Breast Carcinoma Using 3D Reconstruction: A Pilot Study.
Breast J. 2017 Jan;23(1):83-89. doi: 10.1111/tbj.12688. Epub 2016 Nov 17.
5
Robust 3D image reconstruction of pancreatic cancer tumors from histopathological images with different stains and its quantitative performance evaluation.
Int J Comput Assist Radiol Surg. 2019 Dec;14(12):2047-2055. doi: 10.1007/s11548-019-02019-8. Epub 2019 Jul 2.
7
Quantitative assessment of pancreatic cancer precursor lesions in IHC-stained tissue with a tissue image analysis platform.
Lab Invest. 2016 Dec;96(12):1327-1336. doi: 10.1038/labinvest.2016.111. Epub 2016 Oct 24.
10
Mesoscopic 3D imaging of pancreatic cancer and Langerhans islets based on tissue autofluorescence.
Sci Rep. 2020 Oct 26;10(1):18246. doi: 10.1038/s41598-020-74616-6.

引用本文的文献

1
Spatial Multiplexing and Omics.
Nat Rev Methods Primers. 2024;4(1). doi: 10.1038/s43586-024-00330-6. Epub 2024 Aug 1.
2
Generating 2.5D pathology for enhanced viewing and AI diagnosis.
J Pathol Inform. 2025 Jul 18;18:100463. doi: 10.1016/j.jpi.2025.100463. eCollection 2025 Aug.
4
Deep-learning triage of 3D pathology datasets for comprehensive and efficient pathologist assessments.
bioRxiv. 2025 Jul 22:2025.07.20.665804. doi: 10.1101/2025.07.20.665804.
5
COEXIST: Coordinated single-cell integration of serial multiplexed tissue images.
PLoS Comput Biol. 2025 Aug 5;21(8):e1013325. doi: 10.1371/journal.pcbi.1013325. eCollection 2025 Aug.
6
PIVOT: an open-source tool for multi-omic spatial data registration.
bioRxiv. 2025 Jun 8:2025.06.08.658506. doi: 10.1101/2025.06.08.658506.
8
Three-dimensional topological defects and quasi-long-range order in biological liquid crystals.
bioRxiv. 2025 May 10:2025.04.14.648711. doi: 10.1101/2025.04.14.648711.
9
Informatics at the Frontier of Cancer Research.
Cancer Res. 2025 Aug 15;85(16):2967-2986. doi: 10.1158/0008-5472.CAN-24-2829.
10
Spatial proteomics and transcriptomics reveal early immune cell organization in pancreatic intraepithelial neoplasia.
JCI Insight. 2025 Jun 26;10(15). doi: 10.1172/jci.insight.191595. eCollection 2025 Aug 8.

本文引用的文献

1
Prostate Cancer Risk Stratification via Nondestructive 3D Pathology with Deep Learning-Assisted Gland Analysis.
Cancer Res. 2022 Jan 15;82(2):334-345. doi: 10.1158/0008-5472.CAN-21-2843. Epub 2021 Dec 1.
2
Characterization of tumor-associated macrophages in prostate cancer transgenic mouse models.
Prostate. 2021 Jul;81(10):629-647. doi: 10.1002/pros.24139. Epub 2021 May 5.
3
Harnessing non-destructive 3D pathology.
Nat Biomed Eng. 2021 Mar;5(3):203-218. doi: 10.1038/s41551-020-00681-x. Epub 2021 Feb 15.
4
Cancer Statistics, 2021.
CA Cancer J Clin. 2021 Jan;71(1):7-33. doi: 10.3322/caac.21654. Epub 2021 Jan 12.
5
VISTA: VIsual Semantic Tissue Analysis for pancreatic disease quantification in murine cohorts.
Sci Rep. 2020 Dec 1;10(1):20904. doi: 10.1038/s41598-020-78061-3.
6
Mesoscopic 3D imaging of pancreatic cancer and Langerhans islets based on tissue autofluorescence.
Sci Rep. 2020 Oct 26;10(1):18246. doi: 10.1038/s41598-020-74616-6.
7
Histological 3D reconstruction and in vivo lineage tracing of the human endometrium.
J Pathol. 2020 Aug;251(4):440-451. doi: 10.1002/path.5478. Epub 2020 Jun 30.
9
Cellular and Molecular Probing of Intact Human Organs.
Cell. 2020 Feb 20;180(4):796-812.e19. doi: 10.1016/j.cell.2020.01.030. Epub 2020 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验