Suppr超能文献

优化阻尼灰色人口预测模型及其在中国人口结构分析中的应用。

An Optimized Damping Grey Population Prediction Model and Its Application on China's Population Structure Analysis.

机构信息

School of Science, Nantong University, Nantong 226019, China.

Institute of Artificial Intelligence, De Montfort University, Leicester LE1 9BH, UK.

出版信息

Int J Environ Res Public Health. 2022 Oct 18;19(20):13478. doi: 10.3390/ijerph192013478.

Abstract

Population, resources and environment constitute an interacting and interdependent whole. Only by scientifically forecasting and accurately grasping future population trends can we use limited resources to promote the sustainable development of society. Because the population system is affected by many complex factors and the structural relations among these factors are complex, it can be regarded as a typical dynamic grey system. This paper introduces the damping accumulated operator to construct the grey population prediction model based on the nonlinear grey Bernoulli model in order to describe the evolution law of the population system more accurately. The new operator can give full play to the principle of new information first and further enhance the ability of the model to capture the dynamic changes of the original data. A whale optimization algorithm was used to optimize the model parameters and build a smooth prediction curve. Through three practical cases related to the size and structure of the Chinese population, the comparison with other grey prediction models shows that the fitting and prediction accuracy of the damping accumulated-nonlinear grey Bernoulli model is higher than that of the traditional grey prediction model. At the same time, the damping accumulated operator can weaken the randomness of the original data sequence, reduce the influence of external interference factors, and enhance the robustness of the model. This paper proves that the new method is simple and effective for population prediction, which can not only grasp the future population change trend more accurately but also further expand the application range of the grey prediction model.

摘要

人口、资源与环境构成一个相互作用、相互依存的整体。只有科学地预测和准确把握未来人口发展趋势,才能用有限的资源促进社会的可持续发展。由于人口系统受到众多复杂因素的影响,这些因素之间的结构关系较为复杂,可以将其视为典型的动态灰色系统。为了更准确地描述人口系统的演化规律,本文引入了阻尼累加算子,构建了基于非线性灰色 Bernoulli 模型的灰色人口预测模型。新算子可以充分发挥新信息优先的原则,进一步提高模型捕捉原始数据动态变化的能力。利用鲸鱼优化算法对模型参数进行优化,构建了平滑的预测曲线。通过三个与中国人口规模和结构相关的实际案例,与其他灰色预测模型的比较表明,阻尼累加-非线性灰色 Bernoulli 模型的拟合和预测精度均高于传统灰色预测模型。同时,阻尼累加算子可以削弱原始数据序列的随机性,降低外部干扰因素的影响,增强模型的鲁棒性。本文证明了该方法在人口预测方面的简单有效性,不仅可以更准确地把握未来人口变化趋势,还可以进一步拓展灰色预测模型的应用范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ca/9602457/b0f650ab95ba/ijerph-19-13478-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验